kristinagaspa62
?>

Решите неравенство (-x2+6x+7)(3x-6)больше или равно нулю

Геометрия

Ответы

aksmobile
Х принадлежит(-бесконечность;-1] и [2;7]
Решите неравенство (-x2+6x+7)(3x-6)больше или равно нулю
len4ik1986
Интересно, где Вы учитесь, если такие задачи задают. Вот решение этой задачи без теории (вывод формул ищите в учебнике или в записях занятий)
Мне не нравится обозначение радиусов, я их буду обозначать r1, r2, r3;
Окружность, вписанная в исходный треугольник (её радиус я обозначу просто r), является вневписанной для каждого из трех отсеченных. Если построить вневписанные окружности к исходному треугольнику, с радиусами ρ1, ρ2, ρ3; то очевидно (в силу подобия отсеченных треугольников исходному) будут выполнены пропорции
ρ1/r = r/r1; и то же самое для двух других.
то есть ρ1 = r^2/r1; ρ2 = r^2/r2; ρ3 = r^2/r3;
Остается подставить это в известные соотношения
1/r = 1/ρ1 + 1/ρ2 + 1/ρ3; то есть r = r1 + r2 + r3;
и
4R = ρ1 + ρ2 + ρ3 - r; где R - радиус описанной окружности.
то есть 4R = r^2*(1/r1 + 1/r2 + 1/r3 - 1/r); r = r1 + r2 + r3;
это все.
Я бы конечно мог привести вывод этих формул, но Вам бы никогда не задали эту задачу, если бы не выводили их на занятиях.
К примеру, площадь S исходного треугольника равна
S = (p - a)*ρ1 = (p - b)*ρ2 = (p - c)*ρ3 = p*r; откуда
1/ρ1 + 1/ρ2 + 1/ρ3 = (p - a)/S + (p - b)/S + ( p - c)/2 = (3p - a - b - c)/S = p/S = 1/r;
Вывод формулы для R намного сложнее технически, но по сути - то же самое.
TrofimovAnastasiya828
Дано:

Два шара.

Радиусы шаров равны 8,8 см и 6,6 см.

Найти:

Радиус шара, площадь поверхности которого равна сумме площадей их поверхностей - ?

Решение:

Пусть R₁ - радиус одного шара (8,8 см), тогда R₂ - радиус другого шара (6,6 см).

Также R₃ - неизвестный радиус шара, площадь поверхности которого равна сумме площадей поверхностей изначально данных шаров.

S полн поверхности = 4πR²

S полн поверхности (R₁) = π(4 * 8,8²) = 309,76π см²

S полн поверхности (R₂) = π(4 * 6,6²) = 174,24π см².

Итак, по условию сказано, что есть какой-то шар, площадь поверхности которого равна сумме площадей поверхности изначально данных шаров.

⇒ S полн поверхности (R₃) = 309,76π + 174,24π = 484π см².

S полн поверхности (R₃) = 4πR² = 484π см² ⇒ R = √(484/4) = √121 = 11 см.

Итак, R₃ = 11 см.

ответ: 11 см.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите неравенство (-x2+6x+7)(3x-6)больше или равно нулю
Ваше имя (никнейм)*
Email*
Комментарий*