Задание 1
Правильное утверждение под номером 3.
Задание 2
Периметр- это сумма всех сторон фигуры.
Пусть основание x см.
ΔABC- р/б ⇒ периметр равен:
140=30+30+x
x=140-60
x=80
Задание 3
Сумма смежных углов равна 180°⇒ Другой угол равен:
180°-45°=135°
Задание 4
Высота проведенная к основанию равнобедренного треугольника является высотой и медианой⇒ АС=12 см и ∠В=60°. ∠В=60°, углы при основании равны⇒ все углы треугольника равны 60°⇒треугольник равносторонний⇒ все его стороны равны 12 см.
Р=12*3=36.
Задание 5
Пусть x коэффициент пропорциональности. Составим уравнение:
3х+4х+5х=180°; 12х=180°; х=15⇒ углы равны:
15*3=45
15*4=60
15*5=75.
Если не сложно отметь как лучшее решение, я старался.
Задание 1
Правильное утверждение под номером 3.
Задание 2
Периметр- это сумма всех сторон фигуры.
Пусть основание x см.
ΔABC- р/б ⇒ периметр равен:
140=30+30+x
x=140-60
x=80
Задание 3
Сумма смежных углов равна 180°⇒ Другой угол равен:
180°-45°=135°
Задание 4
Высота проведенная к основанию равнобедренного треугольника является высотой и медианой⇒ АС=12 см и ∠В=60°. ∠В=60°, углы при основании равны⇒ все углы треугольника равны 60°⇒треугольник равносторонний⇒ все его стороны равны 12 см.
Р=12*3=36.
Задание 5
Пусть x коэффициент пропорциональности. Составим уравнение:
3х+4х+5х=180°; 12х=180°; х=15⇒ углы равны:
15*3=45
15*4=60
15*5=75.
Если не сложно отметь как лучшее решение, я старался.
Поделитесь своими знаниями, ответьте на вопрос:
Площадь параллелограмма abcd равна 120см. точка e серидина стороны ad найдите площадь треугольника abe
CD = AB. Делим АВ пополам точкой Е1. Соединяем точки Е и Е1 и получаем параллелограмм АDЕЕ1, площадь которого равна 60.
В полученном параллелограмме ADEE1 сторона АЕ является диагональю, следовательно делит его пополам.
Значит площадь треугольника ADE равна 30.