Угол при основании равнобедренного треугольника равен 70°. На высоте треугольника, проведенной к основанию и равной 27 см, как на диаметре построена окружность. Найдите длину дуги окружности, которая принадлежит треугольнику.
Длина окружности диаметром d равна пd
Длина дуги ф градусов равна пd *ф/360°
Диаметр известен, 27 см.
Найдем угол между радиусами.
Он вдвое больше угла против основания.
(Вписанный угол равен половине центрального, опирающегося на ту же дугу.)
Угол против основания 180-70*2=40
Угол искомой дуги 40*2=80
L =27п *80°/360° =6п (см)
Поделитесь своими знаниями, ответьте на вопрос:
Угол треугольника равен 60°. противолежащая ему сторон 4, 8 дм. найдите радиус описанной окружности
Гипотенуза равна 50 см; второй катет равен 40 см.
Объяснение:
Проекция катета на гипотенузу - это перпендикуляр, опущенный из вершины прямого угла на гипотенузу.
Теорема:
Перпендикуляр, опущенный из вершины прямого угла на гипотенузу есть средняя пропорциональная величина между отрезками, на которые основание перпендикуляра делит гипотенузу, а каждый катет есть средняя пропорциональная величина между гипотенузой и прилежащим к этому катету отрезком гипотенузы.
1) Обозначим гипотенузу с, тогда, согласно теореме:
с : 30 = 30 : 18
с = 30² : 18 = 900 : 18 = 50 см
2) По теореме Пифагора находим другой катет b:
b = √(50² - 30²) = √(2500 - 900) = √1600 = 40 см
ответ: гипотенуза равна 50 см, а второй катет равен 40 см.