Теорема 1 ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ. Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.
Доказательство: Пусть а прямая, перпендикулярная прямым b и c в плоскости . Тогда прямая а проходит через точку А пересечения прямых b и c. Докажем, что прямая а перпендикулярна плоскости . Проведем произвольную прямую х через точку А в плоскости и покажем, что она перпендикулярна прямой а. Проведем в плоскости произвольную прямую, не проходящую через точку А и пересекающую прямые b, c и х. Пусть точками пересечения будут В, С и Х. Отложим на прямой а от точки А в разные стороны равные отрезки АА1 и АА2. Треугольник А1СА2 равнобедренный, так как отрезок АС является высотой по условию теоремы и медианой по построению (АА1=АА2). по той же причине треугольник А1ВА2 тоже равнобедренный. Следовательно, треугольники А1ВС и А2ВС равны по трем сторонам. Из равенства треугольников А1ВС и А2ВС следует равенство углов А1ВХ и А2ВХ и, следовательно равенство треугольников А1ВХ и А2ВХ по двум сторонам и углу между ними. Из равенства сторон А1Х и А2Х этих треугольников заключаем, что треугольник А1ХА2 равнобедренный. Поэтому его медиана ХА является также высотой. А это и значит, что прямая х перпендикулярна а. По определению прямая а перпендикулярна плоскости . Теорема доказана.
nagas
19.01.2023
Гипотенуза всегда больше катета, поэтому гипотенуза равна 52. Пусть гипотенуза - с=52, а катет б=20. Пусть высота будет h, а другой катет - а. По теореме Пифагора
Обозначим отрезки гипотенузы, на которые высота делит гипотенузу, за х (ближе к катету б) и 52-х. Теперь составим два уравнения (у нас есть два маленьких прямоугольных треугольника, образованных катетом, высотой и отрезком гипотенузы):
Теперь приравняем эти уравнения, возведём всё, что нужно, в квадрат, перенесём всё в одну сторону и получим:
Ну а теперь по теореме Пифагора найдём h.
ответ:
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Точки а, в и с делят окружность с центром о на три дуги: ав, вс, ас, градусные меры которых относятся как 2: 9: 7. найдите углы аос, вос, асв.
18х=360
х=20
(2÷9÷7)×20= 40° 180° 140°