BH=9см AB=BC=15см AC– основание AB²=BH²+AH² AH=√AB²-BH² AH=√225-81=√144=12 см AC=2×AH=12×2=24см
gavrilasmax05
28.09.2020
Построение отрезка, равного данному. дан - отрезок ab. требуется - построить равный ему отрезок (такой же длины). для этого - построим произвольный луч с началом в новой точке c. циркулем замерим данный отрезок ab. теперь тем же самым раствором циркуля на построенном луче от его начала - c - отложим отрезок, равный данному. для этого иглой циркуля упираем в начало луча c, а пишущей ножкой проводим дугу до пересечения с лучом. точку пересечения назовём d. отрезок cd равен отрезку ab. построение закончено. источник:
viz-art-pnz1664
28.09.2020
Сечение конуса - ΔАВС с основанием АС=6√3 - хорда. равнобедренный ΔАОС (О - центр основания конуса): АО=ОС=R, <AOC=120°, <OAC=<OCA=30°, OM_|_AC, ОМ - высота, медиана ΔАОС, ⇒АМ=3√3. tg30°=OM:AM.
по условию, секущая плоскость составляет с плоскостью основания угол 45°, ⇒ линейный угол ВАСМ - угол ВМО=45°. высота конуса Н=ОМ=3
ответ: Vк=20,25π
2. MABCD - правильная пирамида с диагональю основания АС=d, угол между боковым ребром МА и плоскостью основания <MAC= α MO_|_(MABCD), МО - высота пирамиды. прямоугольный ΔМОА: ОА=d/2, <A=α. tgα=MO:OA, MO=tgα*OA MO=d*tgα/2
Vпир=(1/3)*Sосн*H Sосн=a², a- сторона основания пирамиды диагональ пирамиды найдена по теореме Пифагора из ΔАВС: АС²=АВ²+АС² АВ=АС=а d²=a²+a², d²=2a². d=a√2, ⇒a=d/√2 S=(d/√2)²=d²/2 Vпир=(1/3)*(d²/2)*(d*tgα/2) Vпир=(d³ *tgα)/12
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Боковая сторона равнобедренного треугольника равна 15см, а высота, проведенная к основанию, 9см. найдите основание треугольника
AB=BC=15см
AC– основание
AB²=BH²+AH²
AH=√AB²-BH²
AH=√225-81=√144=12 см
AC=2×AH=12×2=24см