Будем считать, что дано такое задание.
Дано: боковое ребро L = 10,
сторона основания а = 6√2 ≈ 8,4853.
Найти: площадь Sбок боковой поверхности, полную площадь S поверхности и объём V пирамиды.
Находим высоту Н пирамиды, используя длину бокового ребра и длину половины диагонали основания.
Н = √(10² - ((6√2*√2)/2)²) = √(100 - 36) = √64 = 8 см.
Находим апофему:
А = √(L² - (a/2)²) = √(10² - (6√2/2)²) = √(100 - 18) = √82 см.
Получаем:
Площадь основания So = a² = (6√2)² = 72 см².
Sбок = (1/2)РА = (1/2)*(4*6√2)*√82 = 12√164 = 24√41 ≈ 153,675 см².
Полная поверхность S = So + Sбок = 225,675 см².
Объём пирамиды V = (1/3)SoH = (1/3)*72*8 = 192 см³.
Поделитесь своими знаниями, ответьте на вопрос:
На окружности по разные стороны от диаметра аb взяты точки к и f. известно что угол кbа 58. найти угол kfb
Правильное условие:
В треугольнике ABC AB=√21, BC=3√21. Биссектриса внешнего угла треугольника при вершине B пересекает прямую AC в точке P, угол APB равен 30°. Найдите BP.
Внешний угол треугольника равен сумме двух других не смежных с ним.
Пусть ∠CAB = y; ∠BCA = x.
Тогда внешний угол при вершине B равен x+y.
Биссектриса делит угол пополам, поэтому ∠ABP =
По свойству внешнего угла из ΔAPB имеем:
∠CAB = ∠APB+∠ABP;
y = 30°+
2y = 60°+x+y;
y = 60°+x = ∠CAB.
В ΔABC, по теореме синусов, получим равенство:
3√(21)·sin(x) = √(21)·sin(60°+x);
3sin(x) = sin(60°)·cos(x)+cos(60°)·sin(x);
3sin(x) = ·cos(x)+ ·sin(x);
6sin(x)-sin(x) = 5sin(x) = √(3)·cos(x);
Если cos x = 0, то sin x = 0, но синус и косинус не могут одновременно равняться нулю, тогда поделим на cos x ≠ 0;
tg(x) = .
Найдём sin(x):
По основному тригонометрическому тождеству:
sin(x) = +√(3/28) т.к. 0 < x < 180°, как угол треугольника.
По теореме синусов в ΔCPB:
ответ: 9.