Четырехугольник называется вписанным в окружность, если окружность проходит через все вершины четырехугольника. Свойство1. Если четырехугольник вписан в окружность, то сумма его противолежащих углов равна 180°. Свойство2.( Теорема Птолемея). Если четырехугольник вписан в окружность, то сумма произведений его противолежащих сторон равна произведению его диагоналей. Свойство3.( Формула Брахмагупты) Если a,b,c,d - стороны вписанного в окружность четырехугольника, р- его полупериметр, то площадь четырехугольника .
marketing3
10.12.2022
Трапеция АВСД: основания АД=а и ВС=b. Отрезок ЕМ параллелен АД и ВС делит трапецию на 2 равновеликие трапеции Sаемд=Sевсм=Sавсд/2/ Обозначим ЕМ=х. Опустим из вершины В высоту ВН=h на основание АД, она пересекает ЕМ в точке О: ВН=ВО+ОН=h₁+h₂ Sаемд=(АД+ЕМ)*ОН/2=(а+х)*h₂/2 Sевсм=(ЕМ+ВС)*ВО/2=(х+b)*h₁/2 Sавсд=(АД+ВС)*ВН/2=(а+b)*h/2=(а+b)*(h₁+h₂)/2 Составим систему уравнений: 1) Sаемд=Sевсм 2) 2Sаемд=Sавсд Подставляем: 1) (а+х)*h₂/2=(х+b)*h₁/2 или h₂/h₁=(х+b)/(х+а) 2) 2*(а+х)*h₂/2=(а+b)*(h₁+h₂)/2 или 2(а+х)=(а+b)*(h₁+h₂)/h₂ 2(а+х)=(а+b) * (h₁/h₂+1) 2(а+х)=(а+b) * ( (х+а)/(х+b) + 1) 2(а+х)(х+b)=(а+b) * (х+а+х+b) 2(а+х)(х+b)=(а+b)²+2х(а+b) 2ах+2х²+2аb+2xb=a²+2ab+b²+2ax+2xb 2x²=a²+b² x=√(a²+b²)/2 ответ: √(a²+b²)/2
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Напишите доказательство теоремы : если при пересечении двух прямых секущей накрест лежащие углы равны , то прямые паралельны ) только по пунктам
Свойство1. Если четырехугольник вписан в окружность, то сумма его противолежащих углов равна 180°.
Свойство2.( Теорема Птолемея). Если четырехугольник вписан в окружность, то сумма произведений его противолежащих сторон равна произведению его диагоналей.
Свойство3.( Формула Брахмагупты) Если a,b,c,d - стороны вписанного в окружность четырехугольника, р- его полупериметр, то площадь четырехугольника
.