irinaastapova2011
?>

Биссектриса cm треугольника abc делит сторону ab на отрезки am=9 и mb=12. касательная к описанной окружности треугольника abc, проходящая через точку с, пересекает прямую ab в точке d. найдите cd.

Геометрия

Ответы

Tatyanaaarzieva72

∠ACD =∪AC/2 =∠ABC (угол между касательной и хордой)

△ACD~△CBD (по двум углам, ∠D - общий)

AC/CB =CD/BD =AD/CD

AC/CB =AM/MB =9/12 =3/4 (по теореме о биссектрисе)

BD=4/3 CD, AD=3/4 CD

BD-AD=AB => 4/3 CD -3/4 CD =21 <=> CD=21*12/7 =36


Или

∠ACD =∪AC/2 =∠B =>

∠DCM =∠ACD+∠C/2 =∠B+∠C/2 =∠DMC

△CDM - равнобедренный, DC=DM

Квадрат касательной равен произведению секущей на ее внешнюю часть.

DC^2 =DB*DA

DA=DM-AM, DB=DM+MB

DC^2 =(DC+MB)(DC-AM) <=>

DC^2 =DC^2 +MB*DC -AM*DC -AM*MB <=>

DC=AM*MB/(MB-AM) =9*12/(12-9) =36


Биссектриса cm треугольника abc делит сторону ab на отрезки am=9 и mb=12. касательная к описанной ок
TrubnikovKlimenok926
Окружность, уравнение которой x^2+y^2 = 4 - это окружность с центром в начале координат радиусом 2., поскольку уравнение окружности таково: (x - a)^2 + (y - b)^2 = R^2 с центром в точке O(a;b) Радиуса R. Из условия имеем: (x - 0)^2 + (y - 0)^2 = 2^2. Далее, Из условия AB = BM. Рассмотрим это со следующего ракурса: AB = BM - радиусы некоторой окружности. На рисунке как бы мы не проводили хорду АВ, АВ будет равна ВМ и точка М будет лежать на той самой окружности. И хорда АМ большой окружности будет делится надвое радиусом в точке меньшей окружности (B, B1, B2 ... Bn). Получается, множество точек М - это некая окружность с центром B(2;0) радиусом 4. И уравнение такой окружности будет иметь вид: (x-2)^2 + y^2 = 16.

25 за подробное решение : дана окружность х² + у²=4 . из точки а(-2; 0) проведена хорда ав, которая
25 за подробное решение : дана окружность х² + у²=4 . из точки а(-2; 0) проведена хорда ав, которая
25 за подробное решение : дана окружность х² + у²=4 . из точки а(-2; 0) проведена хорда ав, которая
Vladimirovna Viktorovna
Так как A внутри BCD, AB=AD, то BAD - тоже равнобедренный треугольник, и у него общее с BCD основание BD. Поставим точку K так, что BK=KD, тогда KC - медиана BCD, KA - медиана BAD.
Докажем второй пункт.  Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC.
Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Биссектриса cm треугольника abc делит сторону ab на отрезки am=9 и mb=12. касательная к описанной окружности треугольника abc, проходящая через точку с, пересекает прямую ab в точке d. найдите cd.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

linda3930
lika080489
ВитальевичЕвгеньевич346
majorovnatalya5
naromanova
Вячеслав
Espivak
fucksyara
alex13izmailov
Pavlov447
nmakarchuk
a60ikurgannikova
GoncharenkoKuzmin
oksanata777
bas7572513