Средняя линия равнобедренной трапеции ABCD (BC||AD) равна 12 см. Диагональ AC образует с основанием угол 60. Найдите диагональ трапеции
Объяснение:
Т.к. средняя линия равна полусумме оснований трапеции , то сумма оснований будет равна двум длинам средней линии, те ВС+АD=2*12=24(cм)
Проведем ВТ||АС. Тогда АСВТ- параллелограмм , по определению параллелограмма⇒ ВС=АТ и АТ+АD=24
Тк ∠САD=60° и ВТ||АС , то ∠Т=60° как соответственный при секущей ТD.
В равнобедренной трапеции диагонали равны ⇒ВD=AC=BT ⇒ΔBTD- равнобедренный и тогда третий угол равен ∠ТВD=180°-60°-60°=60° ⇒ΔBTD- равносторонний и ВD=BT=AD=24см.
Поделитесь своими знаниями, ответьте на вопрос:
Углы параллелограмма относятся как 2: 3. найдите угол между высотами параллелограмма, проведенными из вершины острого угла
2+3=5 частей составляют два угла
180/5=36 градусов приходится га 1 часть
36*2=72 градуса - меньший угол
36*3=108 градусов
180-72=108
ответ: 108