Докажите, что боковое ребро правильной четырехугольной пирамиды перпендикулярно к одной из диагоналей основания
SABCD - правильная четырёхугольная пирамида.
Правильная - в основании квадрат и высота SO проектируется в точку пересечения диагоналей квадрата. AC∩BD = O
Помним, что в квадрате диагонали взаимно перпендикулярны. AC⊥BD.
Возьмём ребро SA. Это ребро - наклонная для плоскости квадрата.
АО - проекция этой наклонной. АО⊥ BD. По т. о 3-х перпендикулярах SA⊥BD
pnat1235
04.01.2023
Теорема про три перпендикуляри. Якщо пряма, проведена на площині через основу похилої, перпендикулярна до її проекції, то вона перпендикулярна і до похилої. І навпаки, якщо пряма на площині перпендикулярна до похилої, то вона перпендикулярна і до проекції похилої.На малюнку 415 АН - перпендикуляр до площини α; АМ - похила. Через основу похилої - точку М проведено пряму а. Теорема про три перпендикуляри стверджує, що якщо а НМ, то а АМ, і навпаки, якщо а АМ, то а НМ.
Приклад 1. З вершини квадрата АВСD проведено перпендикуляр АК до площини квадрата. Знайти площу квадрата, якщо КD = 5 см; КС = 13 см.Розв’язання (мал. 416). 1) АК АВС; КD - похила; АDБ - її проекція. Оскільки АD DС, то за теоремою про три перпендикуляри маємо КD DС.3) Тоді площа квадрата S = 82 = 64 (см2).
Приклад 2. Сторони трикутника довжиною 4 см, 13 см і 15 см. Через вершину найбільшого кута до площини трикутника проведено перпендикуляр і з його кінця, що не належить трикутнику, проведено перпендикуляр завдовжки 4 см до протилежної сторони цього кута. Знайти довжину перпендикуляра, проведеного до площини трикутника.Розв’язання. 1) У ∆АВС: АВ = 4 см; ВС = 13 см; АС = 15 см. Оскільки АС - найбільша сторона трикутника, то АВС - найбільший кут трикутника. ВК АВС (мал. 417).2) КМ АС, тоді за теоремою про три перпендикуляри: ВМ АС, тобто ВМ - висота ∆АВС. За умовою: КМ = 4см.3) Знайдемо площу трикутника АВС за формулою Герона.4) 3 іншого боку
srgymakarov
04.01.2023
Соединив данную точку с вершинами треугольника, получим треугольную пирамиду с равными (это вытекает из условия) рёбрами. Но тогда будут равны и их проекции на плоскость треугольника и на плоскость, перпендикулярную плоскости треугольника. Так как вторые проекции лежат на прямых, проходящих через вершину пирамиды и пересекающих плоскость треугольника в одной точке (равноудалённой от вершин треугольника), то эти проекции совпадают). Но по условию через вершину пирамиды и данную точку проходит и данная в условии прямая. А это значит, что она совпадает с проекцией рёбер пирамиды на плоскость, перпендикулярную плоскости треугольника. Но эта проекция, а вместе сней и данная прямая, перпендикулярна плоскости треугольника.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Заранее огромное докажите, что боковое ребро правильной четырехугольной пирамиды перпендикулярно к одной из диагоналей основания
Докажите, что боковое ребро правильной четырехугольной пирамиды перпендикулярно к одной из диагоналей основания
SABCD - правильная четырёхугольная пирамида.
Правильная - в основании квадрат и высота SO проектируется в точку пересечения диагоналей квадрата. AC∩BD = O
Помним, что в квадрате диагонали взаимно перпендикулярны. AC⊥BD.
Возьмём ребро SA. Это ребро - наклонная для плоскости квадрата.
АО - проекция этой наклонной. АО⊥ BD. По т. о 3-х перпендикулярах SA⊥BD