alyans29
?>

Основания трапеции равны 16 и 34. найдите отрезок, соединяющий середины диагоналей трапеции. решите

Геометрия

Ответы

nst-33764
У колі з радіусами АО і ОВ пряма а проходить через середини радіусів так, що ОЕ = ОА/4. Оскільки відстань - це перпендикуляр, маємо прямокутний трикутник КОЕ та РОЕ. З прямокутного трикутника КОЕ: ОК = ОА/2, ОЕ = ОА/4. Тобто, катет ОЕ у два рази менший за гіпотенузу ОК. Катет, що дорівнює половині гіпотенузи, лежить проти кута 30 градусів. Тобто, кут ОКЕ = 30 градусів. Кут КОЕ = 90 - 30 = 60 градусів. Трикутники КОЕ та РОЕ рівні за прямим кутом та гіпотенузою, тобто кути КОЕ та РОЕ рівні і дорівнюють по 60 градусів. Кут АОВ = <KOE + <POE = 60 + 60 = 120 градусів.

3. оа і ов – радіуси одного кола. пряма, яка проходить через їх середини віддалена від центра кола н
samsludmila

Угло при нижнем основании равнобедренной трапеции меньше 90°, а при верхнем больше 90°, поэтому ∠A = 60° - угол основания.

Нам неизвестно какая сторона боковая, известно только то, что они смежные. Поэтому решим два варианта.

1. AB - нижнее основание.

H₁, H₂ ∈ AB; DH₁ , CH₂ ⊥AB ⇒ DH₁ ║ CH₂

ΔADH₁ = ΔCBH₂ - по гипотенузе и острому углу т.к. трапеция равнобедренная.

AH₁ = H₂B - как соответственные стороны равных Δ.

∠H₂CB = 90° - ∠CBH₂ = 90° - 60° = 30° - как острые улг. в прямоугольном Δ.

H₂B = BC/2 = 20/2=10 - как катет лежащей напротив угла в 30° в прямоугольном Δ.

H₁H₂ = 32 - 10*2 = 12 = т.к. DH₁ ║ CH₂ и DH₁ = CH₂ - как соответственные стороны равных Δ.

P - периметр.

P = AB+ 2BC + CD = 32 + 40 + 12 = 84.

ответ: 84.

2. AB - боковая сторона.

H₁, H₂ ∈ AD; BH₁ , CH₂ ⊥AD ⇒ BH₁ ║ CH₂ ⇒ BH₁ = CH₂ - как параллельные отрезки заключённые между параллельными прямыми, поэтому BCH₂H₁ - прямоугольник ⇒ H₁H₂ = BC = 20.

ΔABH₁ = ΔCDH₂ - по гипотенузе и острому углу т.к. трапеция равнобедренная.

AH₁ = H₂D - как соответственные стороны равных Δ.

∠ABH₁ = 90° - ∠BAH₁ = 90° - 60° = 30° - как острые улг. в прямоугольном Δ.

AH₁ = AB/2 = 32/2=16 - как катет лежащей напротив угла в 30° в прямоугольном Δ.

BC = AD т.к. BH₁ ║ CH₂ и BH₁ = CH₂ - как соответственные стороны равных Δ.

AD = 20 + 16·2 = 52

P - периметр.

P = 2AB + BC + DA = 64 + 20 + 52 = .

ответ: 136.


Вравнобедренной трапеции abcd дано : cb=20; ab=32. угол а=60 градусов найти: периметр abcd

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Основания трапеции равны 16 и 34. найдите отрезок, соединяющий середины диагоналей трапеции. решите
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

maximpr6
РостиславовичЮлия1147
Алена
Тоноян
Николаевна Филиппов1936
evge-borisova2
galkar
nnbeyo
Shevchenko
komolovda
Viktor1316
Тресков946
Решетникова
Ubuleeva826
nikolotovas