треугольник, а треугольник - описанным около этой окружности.
Теорема. В любой треугольник можно вписать окружность и при этом только одну.
Центр вписанной в треугольник окружности находится в точке пересечения его биссектрис.
Описанная окружность
Если все вершины многоугольника лежат на окружности, то окружность называется описанной около треугольника, а треугольник - вписанным в эту окружность.
Теорема. Около любого треугольника можно описать окружность и при этом только одну.
Центр описанной около треугольника окружности находится в точке пересечения серединных перпендикуляров.
Поделитесь своими знаниями, ответьте на вопрос:
Измерения прямоугольного параллелепипеда равны 3, 7, 12. Найдите: а) диагональ параллелепипеда; б) площадь диагонального сечения
Две прямые касаются окружности (радиусом 9 см) с центром О в точках Р и K и пересекаются в точке M. Найдите угол между этими прямыми, если ОМ = 18 см.
Объяснение:
Дано Окр О( R=9) , МР, МК-касательные , ОМ=18 см.
Найти ∠РМК.
Решение.
ΔРМО-прямоугольный, по свойству касательной. Т.к гипотенуза ОМ = 18 см, катет ОР =9 см в два раза меньше , то угол ∠РМО=30°.
Отрезки касательных к окружности, проведенных из одной точки М, равны и составляют равные углы ( это ∠РМО и ∠КМО ) с прямой, проходящей через эту точку и центр окружности ⇒∠РМО и ∠КМО.
Тогда ∠РМК=∠РМО + ∠КМО= 30°+30°=60°
ответ.∠РМК=60°