Пусть АВСD - ромб, АС = 16, АВ = ВС = СD = AD = 10 О - точка пересечения диагоналей Диагонали ромба (как параллелограмма) пересекаются и в точке пересечения делятся пополам, поэтому АО = 16: 2 = 8 см Диагонали ромба пересекаются под прямым углом. Поэтому треугольник АОВ прямоугольный с прямым углом В По теореме Пифагора AO ^ 2 + BO ^ 2 = AB ^ 2AO 2 + BO 2 = AB 2 8 ^ 2 + BO ^ 2 = 10 ^ 28 2 + BO 2 = 10 2 64 + BO ^ 2 = 10064 + BO 2 = 100 BO ^ 2 = 100-64BO 2 = 100-64 BO ^ 2 = 36 = 6 ^ 2BO 2 = 36 = 6 2 BO> 0; BO = 6BO> 0; BO = 6 Значит вторая диагональ равна BD = 2BO = 2 * 6 = 12 см Площадь ромба равна половине произведения диагоналей. Площадь ромба (как параллелограмма) равна произведению стороны на высоту проведенную к этой стороне. S = \ frac {1} {2} AC * BD = AB * hS = 2 1 AC * BD = AB * h откуда высота ромба равна h = \ frac {AC * BD} {2 * AB} = \ frac {12 * 16} {2 * 10} = 9.6h = 2 * AB AC * BD = 2 * 10 12 * 16 = 9.6 см ответ: 9.6 см
Объяснение:
вот,наверно правильно)
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике abcab=bc=6, ∠b=40∘ . найдите биссектрису bk . ответ округлите до целых. 5 4 6 2
предыдущее решение полностью соответствует, я просто хочу показать геометрически понятное решение.
Треугольник надо достроить до параллелограмма, тогда третья сторона и удвоенная медиана - его диагонали. Поэтому половина третьей стороны - это медиана в треугольнике со сторонами (23, 11, 20), проведенная к стороне 20 :).
Теперь можно воспользоваться формулой для медианы, но если не охота запоминать много формул - можно просто воспользоваться дважды теоремой косинусов (именно так и выводится эта формула)- для треугольника (23, 11, 20) и треугольника (23, с/2, 10), где с - третья сторона исходного треугольника (а с/2 - медиана в треугольнике (23, 11, 20), делящая сторону 20 пополам).
Если обозначить за Ф - угол между стороной 23 и медианой 10 исходного треугольника, то
11^2 = 23^2 + 20^2 - 2*20*23*cos(Ф);
(c/2)^2 = 23^2 + 10^2 - 2*10*23*cos(Ф);
Умножаем на 2 второе уравнение и вычитаем первое
2*(с/2)^2 - 11^2 = 23^2 + 2*10^2 - 20^2;
с^2/2 = 11^2 + 23^2 + 2*10^2 - 20^2 = 450;
c = 30;