Пусть точка О - центр правильного ΔАВС.Построим AK┴BC и отрезок DK. По теореме о 3-х перпендикулярах DK┴BC.
а) В правильной пирамиде все боковые ребра равны, поэтому достаточно вычислить длину ребра AD.
OA=R, R - радиус описанной около ΔАВС окружности.
Объяснение:
б) ΔADB=ΔBDC=ΔADC (по трем сто ронам), отсюда следует, что плоские углы при вершине пирамиды равны.
По теореме косинусов имеем:
AB2=AD2=DB2 - 2ADВсе боковые ребра составляют с плоскостью основания одинако вые углы. Это следует из равенства ΔDAO=ΔDBO=ΔDCO
г) Все боковые грани наклонены к плоскости основания под
одинаковым углом. Из ΔDOК имеем:∙DB∙cosα,
АВ - гипотенуза, СН - высота
АН = 3 см
НВ = 9 см
Объяснение:
Дано:
тр АВС (уг С=90*)
уг В = 30*
Ас = 6 см
СН - высота
Найти:
АН и НВ - ?
1) рассм тр АВС
АВ = 2* АС по св-ву катета, лежащего против угла в 30*,
АВ = 2*6 = 12 см
уг А = 90 - 30 = 60* по св-ву углов в прямоуг тр
2) рассм тр АНС, в нём уг А = 60* (из п1), уг Н = 90* (по усл СН - высота)
уг НСА = 90-60 = 30* по св-ву углов прямоуг тр;
АН = АС : 2 ; АН = 6 : 2 = 3 см по св-ву катета, лежащего против угла в 30*
3) АВ = АН + НВ
АВ = 12 см из 1 п
АН = 3 см из 2 п
НВ = 12 - 3 = 9 см
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике abc проведена биссектриса ae. найдите ∠ bae, если известно что ∠ eac=22 градуса
22
Объяснение:
Угол ВАС разделили на два равных угла (это следует из того что АЕ биссектриса) ВАЕ и ЕАС, следовательно если ЕАС = 22,то и ВАЕ = 22