Пусть АВСД - паралеллограмм. АВ=СД=4 см, ВС=АД=5 см. АС=корень(61), угол А и угол С - острые.
(противоложные стороны параллелограмма равны, противоположные углы параллелограмма равны)
Тогда по теоремме косинусов
cos (B)=cos (D)=(AB^2+BC^2-AC^2)/(2*AB*BC)
cos (B)=cos (D)=(4^2+5^2-(корень(61))^2)/(2*4*5)=-1/2
отсюда угол В=угол Д=120 градусов
угол А+угол В=180 градусов (сумма углов при одной стороне параллелограмма равна 180 градусов)
угол А=угол С=180-120=60 градусов
ответ: 60 градусов, 120 градусов, 60 градусов, 120 градусов
Поделитесь своими знаниями, ответьте на вопрос:
Найдите боковую поверхность конуса, если радиус его основания и образующая соответственно равны: а) 11 см и 8 см; б) 8 мм и 11 мм; в) 3 м и 18 м; г) 2, 7 м и 1, 2 м.
Дана равнобедренная трапеция АВСД. АВ и СД - боковые стороны. ВС - меньшее основание. По условию (и св-вам равнобедренной трапеции) АВ=СД=ВС
Проведем диагональ ВД. По условию угол АВД=120 градусов.
Проведем вторую диагоняль СА. (точка их пересечения О)Треугольник ВСО равнобедренный (по свойствам равн. трапеции), где ВО=ОС и угол ОВС=углу ВСО = х.
Треугольник АВС тоже равнобедренный. У него АВ=ВС (по условию) => Угол ВАС=углу ВСА(или ВСО) => угол АВС=углу ВСО=углу ОВС = х.
Найдем чему равен х:
120+х это угол АВС
120+х+х+х=180
3х=60
х=20 градусов.
Следовательн, углы при меньшем основании = 120+20=140 градусов (каждый по 140)
Углы при большем основании = (360-140-140):2=40 градусов (каждый по 40)