Обозначим пирамиду МАВС.
Боковые ребра пирамиды наклонены под одинаковым (45°) углом к плоскости основания.
Значит, их проекции равны радиусу описанной окружности правильного треугольника, а вершина пирамиды проецируется в центр О ее основания.
Боковые ребра с высотой пирамиды образуют равнобедренный прямоугольный треугольник .
В ∆ МАО угол МАО= 45° (по условию). Поэтому высота МО пирамиды равна радиусу АО описанной окружности.
Радиус описанной окружности находят по формуле R=а/√3
R=АО=12:√3=12√3:3=4√3
МО=АО=4√3
Поделитесь своими знаниями, ответьте на вопрос:
Диагонали равнобедренной трапеции точкой пересечения делятся в отношении 2: 5. вычисли периметр трапеции, меньшее основание которой равно высоте и равно 8 см.
Трапеция АБСД
ВО/ ОД=СО/ОА=2/5
АБ=СД
ВН=ВС=8 см