1-ый признак равенства треугольников: по двум сторонам и углу между ними (Теорема 3.1. – Признак равенства треугольников по двум сторонам и углу между ними - Если две стороны и угло между ними одного треугольнгрка равны соотвественно двум сторонам и углу между ними другого треугольника, то такие треугольники равны)
Доказательство:
Пусть у треугольников АВС и А1В1С1 угол А равен углу А1, АВ равно А1В1, АС равно А1С1, докажем, что треугольники равны.
Пусть А1В2С2 – треугольник, равный АВС, с вершины В2 на луче А1В1 и вершины С2 в той же полуплоскости относительно прямой А1В1, где лежит вершина С1.
Так как А1В1 равно А1В2, то вершина В2 совпадет с В1. Так как угол В1А1С1 равен углу В2А1С2, то луч А1С2 совпадет с А1С1. Так как А1С1 равен А1С2, то С2 совпадет с С1. Значит треугольник А1В1С1 совпадает стреугольниом А1В2С2, значит равен треугльнику АВС.
Теорема доказана.
2-ой признак равенства треугольников: по стороне и прилежим к ней углам (Теорема 3.2. - Признак равенства треугольников по стороне и прилежащим к ней углам - Если сторона и прилежащие у ней углы одного треугольника равны соотвественно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны)
Доказательство:
Пусть АВС и А1В1С1 – два треугольника, у которых АВ равно А1В1, угол А равен углу А1, и угол В равен углу В1. Докажем, что они равны.
Пусть А1В2С2 – треугольник, равный АВС, с вершины В2 на луче А1В1 и вершины С2 в той же полуплоскости относительно прямой А1В1, где лежит вершина С1.
Так как А1В2 равно А1В1, то вершина В2 совпадет с В1. Так как угол В1А1С2 равен углу В1А1С1, и угол А1В1С2 равен углу А1В1С1, то луч А1С2 совпадет с А1С1, а В1С2 совпадет с В1С1. Отсюда следует, что вершина С2 совпадет с С1. Значит треугольник А1В1С1 совпадает стреугольниом А1В2С2, значит равен треугльнику АВС.
Теорема доказана.
3-ий признак равенства треугольников: по трем сторонам ( Теорема 3.6. - Признак равенства треугольников по трем сторонам - Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны)
Доказательство:
Пусть АВС и А1В1С1 – два треугольника, у которых АВ равно А1В1, АС равно А1С1, и ВС равно В1С1. Докажем, что они равны.
Допустим, треугольники не равны. Тогда у них угол А не равен углу А1, угол В не равен углу В1, и угол С не равен углу С1. Иначе они были бы равны, по перовому признаку.
Пусть А1В1С2 – треугольник, равный треугольнику АВС, у которого Свершина С2 лежит в одной полуплоскости с вершиной С1 относительно прямой А1В1.
Пусть D – середина отрезка С1С2. Треугольники А1С1С2 и В1С1С2 – равнобедренные с общим основанием С1С2. Поэтому их медианы А1D и В1D – являются высотами, значит прямые А1D и В1D – перпендикулярны прямой С1С2. Прямые А1D и В1D не совпадают, так как точки А1, В1, D не лежат на одной прямой, но через точку D прямой С1С2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию.
Поделитесь своими знаниями, ответьте на вопрос:
Изобразите точку, симметричную точке а относительно центра о (рис. 10.5
но, получив "красивый" ответ --- угол равен 45°,
захотелось найти более простое решение
(ведь не указано для какого класса решается задача и, возможно, тригонометрия автору еще не известна)))
не знаю--получилось ли проще...
т.к. один данный угол является половиной другого,
то очень хочется связать их в один треугольник...
если провести биссектрису угла в 30°, то
получим равнобедренный треугольник с углами при основании по 15°,
в нем хочется построить высоту...
но тогда и к биссектрисе провести перпендикуляр и получим
еще один равнобедренный треугольник с углом при вершине 30°)))
осталось рассмотреть получившиеся треугольники...
один из них (выделила желтым цветом) окажется равносторонним...
другой (прямоугольный) окажется равнобедренным...
(ярко желтые уголки--по 45°)