Мартынова1638
?>

Даны векторы a⃗ (8; n) и b⃗ (−6; 3) . при каких значениях n угол между векторами a⃗ и b⃗ тупой? y< 16 y< −16 y> 16 y> −16

Геометрия

Ответы

Fedorovich309

Правильный ответ:  у<16.

Удачи)

lobutev

если две параллельные прямые пересечены секущей, то накрест лежащие углы равны.

доказательство:

пусть прямые  а  и  b  параллельны и пересечены секущей cd. доказать, что накрест лежащие углы 1 и 2 равны.

предположим, что углы 1 и 2 не равны. тогда от луча cd отложим ∠еcd=∠2 так, чтобы ∠еcd и ∠2 были накрест лежащими углами при пересечении прямых се и  b  секущей cd.

по построению эти накрест лежащие углы равны, а поэтому прямая cd параллельна прямой  b. получили, что через точку с проходят две прямые (а  и cе) параллельные прямой  b. а это противоречит аксиоме параллельности прямых. следовательно, предположение неверно и угол ∠1=∠2. что и требовалось доказать.

пример.

прямая ав параллельна прямой cd, аd - биссектриса угла bac, а ∠adc=50 градусов. чему равна градусная мера ∠cad?

так как прямые ав и cd параллельны и ad - секущая при этих параллельных прямых, то накрест лежащие углы adc и bad равны. значит, ∠bad=50 градусов.

так как ad - биссектриса ∠bac, то ∠cad=∠bad. следовательно, градусная мера ∠cad=50 градусов.

пример.

прямые ав и cd параллельны. отрезок ав=сd. доказать, что прямая ас параллельна прямой bd.

рассмотрим треугольник abd и треугольник acd.

ав=cd по условию , ad - общая. а углы bad и adc равны как накрест лежащие углы при параллельных прямых ав и cd и секущей аd. следовательно, треугольники abd и acd равны по первому признаку равенства треугольников. а значит, у них соответственные стороны и углы равны.

то есть ∠cad=∠bda. а эти углы являются накрест лежащими при прямых ac и bd и секущей ad. это означает, что прямые ac и bd параллельны. что и требовалось доказать.

пример.

на рисунке ∠cbd=∠adb. доказать, что ∠вса=∠cad.

углы cbd и adb - накрест лежащие углы при прямых ad и bc и секущей bd. а так как эти углы равны, то прямые ad и bc параллельны.

∠вса и ∠cad являются накрест лежащими при параллельных прямых ad и bc и секущей ас, а следовательно, они равны. что и требовалось доказать.

отметим, что если доказана какая-либо теорема, то это не означает, что обратная ей теорема верна.

например, если углы вертикальные, то они равны. а вот если углы равны, то это ещё не означает, что они вертикальные.

1)если две параллельные прямые пересечены секущей, накрест лежащие углы равны.2)если две параллельные прямые пересечены секущей, то соответственные углы равны.3)если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.4)если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
yaelenatu
 Пусть M- cередина АС, N - середина АВ. Продолжим ВМ на расстояние ВМ, получим Q, продолжим CN на расстояние CN, получим Р. 
Рассмотрим четырехугольник APBC, в нем диагонали РС и АВ точкой пересечения N делятся пополам, значит, это параллелограмм (признак такой), значит АР параллельна ВС (определение параллелограмма). 
Рассмотрим четырехугольник ABCQ, в нем диагонали AС и ВQ точкой пересечения M делятся пополам, значит, это параллелограмм (признак такой), значит АQ параллельна ВС (определение параллелограмма). 
Итак, в точке А проведены две прямые АР и АQ, параллельные ВС. По 5 постулату Евклида (аксиома параллельности) через точку вне прямой можно провести единственную прямую, параллельную данной, значит, точки А, Р,  Q лежат на одной прямой

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Даны векторы a⃗ (8; n) и b⃗ (−6; 3) . при каких значениях n угол между векторами a⃗ и b⃗ тупой? y< 16 y< −16 y> 16 y> −16
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Vladimirovich351
msk27
svetlana-ladyga
Kalmikova1666
nalich8524
natura-domA90
maglevanyycpt
Сурат1199
Антон
Егоркина
arammejlumyan
Lukina
bulk91675
avn23
dashakhmeleva6