Конус. Образующая равностороннего конуса наклонена к основанию под углом 60 градусов. Образующая равна двум радиусам: L = 2Rk. Радиус его основания равен: Rk = H/√3. Площадь основания Sok = πRk² = πH²/3. Площадь Sбок боковой поверхности равна: Sбок = πRL = π(H/√3)*(2H/√3) = (2/3)πH²/3. Площадь S полной поверхности равна: S = Sok + Sбок = πRL = πH²/3 + (2/3)πH²/3 = πH².
Цилиндр. Радиус его основания равен: Rц = H/2. Площадь основания Soц = πRц² = πH²/4. Площадь Sбок боковой поверхности равна: Sбок = 2πRцH = 2π(H/2)*H = πH². Площадь S полной поверхности равна: S = 2Soц + Sбок = πH²/2 + πH² = (3/2)πH².
ответ: отношение площадей их полных поверхностей равно 1:(1,5).
Aleksandrovich1075
06.09.2021
Обозначим стороны АВ=АС=b, BC=a, биссектрису BL=d, угол ABL=альфа, тогда углы при основании треугольника ABC=ACB=(2альфа)угол при вершине BAC=(180-4альфа)и альфа должен быть < 45 градусов, т.е. 2альфа должен быть < 90 градусов, т.к. в равнобедренном треугольнике угол при основании не может быть тупым...угол ALB=(3альфа)по т.синусов: a*sin(2альфа) = b*sin(180-4альфа)отсюда a = b*sin(180-4альфа) / sin(2альфа) = b*sin(4альфа) / sin(2альфа) = = 2*b*cos(2альфа)по т.синусов: AL*sin(3альфа) = b*sin(альфа)по условию задачи d = BC - AL = a - b*sin(альфа) / sin(3альфа) = = 2*b*cos(2альфа) - b*sin(альфа) / sin(3альфа) = = b* ( 2*cos(2альфа) - sin(альфа) / sin(3альфа) )для длины биссектрисы справедлива формула: d = 2*a*b*cos(альфа) / (a+b)отдельно запишем a+b = 2*b*cos(2альфа) + b = b*(2*cos(2альфа) + 1)d = 2*2*b*cos(2альфа)*b*cos(альфа) / ( b*(2*cos(2альфа) + 1) ) = = 4*b*cos(2альфа)*cos(альфа) / (2*cos(2альфа) + 1)если приравнять два получившихся равенства для биссектрисы d, то длина стороны b сократится и останется тригонометрическое равенство:sin(альфа) / sin(3альфа) = = 2*cos(2альфа) - 4*cos(2альфа)*cos(альфа) / (2*cos(2альфа) + 1)после несложных преобразований можно получить равенство:2*cos(2альфа)*(4*(cos(альфа))^2 - 1) = 1 + 4*cos(2альфа)*cos(альфа)это выражение можно привести к полному уравнению четвертой степени относительно косинуса альфа одно из решений здесь очевидно... cos(альфа) = +- 1/2но этот угол не может быть в равнобедренном треугольнике (см. выше...)))если решать оставшееся кубическое уравнение, то единственным подходящим решением получается cos(альфа) =примерно= 0.94 (0.93969)это угол около 20 градусовтогда углы данного равнобедренного треугольника 40, 40, 100
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Плоскости α и β параллельны. параллельные прямые а и б пересекают плоскость α в точках а и в , а плоскость β -в точках с и д . доказать , что ав =сд
Образующая равностороннего конуса наклонена к основанию под углом 60 градусов. Образующая равна двум радиусам: L = 2Rk.
Радиус его основания равен: Rk = H/√3.
Площадь основания Sok = πRk² = πH²/3.
Площадь Sбок боковой поверхности равна:
Sбок = πRL = π(H/√3)*(2H/√3) = (2/3)πH²/3.
Площадь S полной поверхности равна:
S = Sok + Sбок = πRL = πH²/3 + (2/3)πH²/3 = πH².
Цилиндр.
Радиус его основания равен: Rц = H/2.
Площадь основания Soц = πRц² = πH²/4.
Площадь Sбок боковой поверхности равна:
Sбок = 2πRцH = 2π(H/2)*H = πH².
Площадь S полной поверхности равна:
S = 2Soц + Sбок = πH²/2 + πH² = (3/2)πH².
ответ: отношение площадей их полных поверхностей равно 1:(1,5).