4) DEC = CKD, тк DK = DE, (по условию), угол EDC = углу CDK (по условию), сторона DC - общая сторона, => DEC = CKD по двум сторонам и углу между ними. 5) QRO = OQP тк QO = OP (по условию), угол QOR = углу POR (по условию) RO - высота и медиана => треугольник QRP - равнобедренный => OR = RP => QRO = OQP по двум сторонам и углу между ними 8) CDE = EFC тк CF = DE (по условию), угол FCE = углу CED (по условию), CE - общая сторона => CDE = EFC по двум сторонам и углу между ними.
irinaastapova2011
05.02.2023
Пусть О1, О2 и О3 - центры данных нам окружностей, точки А, В и С - точки их касания. Тогда О1А=О1С=2, О2А=О2В=3, О3В=О3С=4. Значит стороны треугольника О1О2О3 равны:5,6 и 7. Тогда площадь этого треугольника по Герону равна: S=√[p*(p-a)(p-b)(p-c)], где р - полупериметр, а,b,с - стороны треугольника. р=(5+6+7)/2=9. S=√(9*4*3*2)=6√6. Заметим, что окружность, описанная вокруг треугольника АВС - это вписанная в треугольник О1О2О3 окружность, так как точки А, В и С окружности принадлежат сторонам О1О2,О2О3 и О3О1 соответственно. Докажем это. Есть формула нахождения длины отрезка от вершины треугольника до точки касания с вписанной окружностью: расстояние от вершины С треугольника до точки, в которой вписанная окружность касается стороны, равно d=(a+b-c)/2 или d=р-с, где р - полупериметр, с - сторона, противоположная углу треугольника. В нашем случае: О1А=9-7=2, О2А=9-6=3, О3В=9-5=4, следовательно, точки касания вписанной в треугольник АВС окружности совпадают с точками А, В и С касания данных нам окружностей. Радиус вписанной в треугольник окружности равен r=S/p или в нашем случае r=6√6/9=2√6/3. ответ: r=2√6/3.
bochkarevazh
05.02.2023
Биссектриса делит угол А на два равных угла. Перпендикуляр к биссектрисе также даёт равные углы по 90 градусов каждый. В итоге мы имеем 2 треугольника равные по двум углам и имеющие общую сторону (биссектрису). Равные по двум углам треугольники имеют и одинаковый третий угол - это следствие того, что сумма углов любого треугольника равна 180°. Таким образом мы имеем треугольник, склеенный из двуходинаковых прямоугольных треугольников по катету (биссектрисе данного угла) ⇒ треугольник AMN равнобедренный
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Решить , посмотрите на фото, 7 класс. на фотографии с углами, там только нужно 3-е , а с треугольниками 4, 5, 8.
5) QRO = OQP тк QO = OP (по условию), угол QOR = углу POR (по условию)
RO - высота и медиана => треугольник QRP - равнобедренный => OR = RP
=> QRO = OQP по двум сторонам и углу между ними
8) CDE = EFC тк CF = DE (по условию), угол FCE = углу CED (по условию), CE - общая сторона => CDE = EFC по двум сторонам и углу между ними.