У этой задачки есть очень наглядное решение.
Можно взять три взаимно перпендикулярные координатные оси и разместить четыре вершины прирамиды в точках (0,0,0) (1,0,0) (0,1,0) (0,0,1). Легко убедиться, что любая из вершин, кроме (0,0,0), является вершиной трехгранного угла, заданного в задаче.
Сама пирамида при этом представляет собой правильную треугольную пирамиду, "боковые" грани которой - равнобедренные прямоугольние треугольники, а "основание" - правильный треугольник с вершинами в точках (1,0,0) (0,1,0) (0,0,1).
Поэтому искомый угол равен 60 градусам.
Эту же мысль (трудно назвать это решением - уж больно просто:)) можно выразить без упоминания координатных осей. Дело в том, что упомянутая пирамида - это часть обыкновенного куба, отсекаемая плоскостью, проходящей через концы трех ребер, имеющих общую вершину.
Берется какая -то вершина куба АBCDA1B1C1D1, например, А, и проводится сечение через точки В, D и А1, у пирамиды А1BDA все трехгранные углы при вершинах "основания" A1BD соответствуют условию задачи. В самом деле, рассмотрим, например, вершину D. Треугольники ADB и ADA1 - равноберенные прямоугольние, поэтому углы АDB и ADA1 равны 45 градусов. Что же касается двугранного угла между плоскостями АDB и ADA1, то это - двугранный угол между гранями куба :), то есть он равен 90 градусам.
Поэтому трехгранный угол при вершине D пирамиды А1BDA удовлетворяет условию задачи. По условию задачи, нужно найти угол A1DB, но он очевидно равен 60 градусам, поскольку треугольник A1DB равносторонний.
Поделитесь своими знаниями, ответьте на вопрос:
дан правильный тетраэдр dabc с ребром a. при симметрии относительно точки d плоскость abc перешла в плоскость a1b1c1. найдите расстояние между этими плоскостями. с рисунком
............................................