baton197310
?>

Луч ak-биссектриса угла bac.на сторонах угла отложены равные отрезки аb и ac запишите равные элементы треугольников bak и cak и определите по какому признаку треугольники равны​

Геометрия

Ответы

Vladimirovich-Aleksandrovna96
Пусть S - вершина пирамиды SABCD ;
основание ABCD - параллелограмм  ;
AB =CD =3 см , BC =AD =7 см , BD =6 см ; 
SO ⊥ (ABCD) ,SO =H =4 см ,O - точка пересечения диагоналей .
------
SA =SC -? , SB=SD -? 
---
Известно: AC²+BD² = 2(AB²+BC²) 
⇒AC =√(2(AB²+BC²) - BD²) =√(2(3²+7²) -6²) =4√5 (см).
Из ΔAOS  по теореме Пифагора : 
SA =√(AO²+SO²) =√((AC/2)²+SO²)=√(2√5)²+4²) =6 (см).
Аналогично  из ΔBOS:
SB =√(BO²+SO²) =√((BD/2)²+SO²)=√(3²+4²) =5 (см). 
* * * диагонали параллелограммы в точке пересечения делятся пополам  * * *
ответ: SA =SC = 6 см SB=SD =5 см.
Основание пирамиды является параллелограмм, со сторонами 3 и 7 см и 1-ой из диагоналей 6 см. высота
Владимировна Екатерина
Нужно воспользоваться формулами приведения (Атанасян  параграф 94),
sin (180- a)=sin a.    cos (180-a)= - cos a  ,если угол а лежит между 0 и 180град.
 У нас именно этот случай. От 180гр. нужно отнять такой угол,чтобы в скобках получился искомый угол.
1) sin120= sin (180-60)= sin60=V3/2  cos120= cos(180-a)= -cos60= -1/2
tg120= sin120/cos120=V3/2 :(-1/2)= -V3
2) sin135= sin (180-45)=sin 45=V2/2.  cos135= cos(180-45)= -cos45=V2/2
tg135=sin135/cos135= V2/2:(-V2/2)= -1
3) sin150=sin(180-30)= sin30=1/2.  cos150=cos (180-30)= -cos30= -V3/2
tg150= sin150/cos150=1/2:(-V3/2)=1/V3

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Луч ak-биссектриса угла bac.на сторонах угла отложены равные отрезки аb и ac запишите равные элементы треугольников bak и cak и определите по какому признаку треугольники равны​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

MISAKOVNA49
asnika1989
aksmobile
ledlenta751
dfyurst708
andreykrutenko
lazareva
filternovo
Сергей_Крутикова114
yelena
obar1
Александрович Андреевна
demakova1969
Vs1377
Kushchenko-Monashev