На одной стороне угла (не равного 180°) с вершиной O последовательно отложим отрезки OC = c и CB = b (C между O и B), а на второй стороне – отрезок OA = a. Через точку B проведём прямую, параллельную AC. Пусть эта прямая пересекается с прямой OA в точке D. По теореме о пропорциональных отрезках AD : OA = BC : OC, или AD : a = b : c, то есть OD – искомый отрезок x.
Объяснение:
AHO436
30.03.2021
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Дмитриевич Бирковская69
30.03.2021
1)Высота прямоугольного треугольника, проведенного из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. т.е. H= корень из (18*2) = 6. Рассмотрим один из образовавшихся треугольников. В нём угол, который образует высота, равен 90. ПО т. Пифагора: b= корень (18^2+6^2) = корень из 360. Теперь по т. Пифагора ля всего треугольника. а = корень из ((18+2)^2 - (корень из 360)^2) = корень из 40 Находим площадь, S=1/2 ab S= 1/2*корень из 40* корень из 360 = 60.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Даны отрезки a , b , c постройте отрезок x = ac / b
На одной стороне угла (не равного 180°) с вершиной O последовательно отложим отрезки OC = c и CB = b (C между O и B), а на второй стороне – отрезок OA = a. Через точку B проведём прямую, параллельную AC. Пусть эта прямая пересекается с прямой OA в точке D. По теореме о пропорциональных отрезках AD : OA = BC : OC, или AD : a = b : c, то есть OD – искомый отрезок x.
Объяснение: