Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
Поделитесь своими знаниями, ответьте на вопрос:
Прямая, параллельная стороне mn треугольника mnk, пересекает стороны km и кn в точках е и f соответственно, ке = 6 см, км = 10 см, кf = 9 см, кn = 15 см. найдите отношения : б) pkmn : pkef; в) skef : skmn
периметры относятся как коэффициент подобия,
площади относятся как квадрат коэффициента подобия...
S1 / S2 = 25 / 49
S1 = 25×S2 / 49
S2 ---большая площадь
S2 - S1 = 864
S2 - 25×S2 / 49 = 864
49×S2 - 25×S2 = 864×49
24×S2 = 24×36×49
S2 = 36*49 = 1764
S1 = 25*36*49 / 49 = 900
k = 2 : 3 коэффициент подобия
S₁ : S₂ = 2² : 3²
S₁ : (130 - S₂) = 4 : 9
По основному свойству пропорции, произведение крайних = произведению средних
9S₁ = 4 (130 - S₁)
13S₁ = 520
S₁ = 40 (cм²) - площадь меньшего многоугольника
S₂ = 130 - 40 = 90 (cм²) - площадь бОльшего многоугольника