Sпол=13,5√3+45≈68,355см²
Объяснение:
Полная площадь поверхности пирамиды состоит и суммы площадей её боковой поверхности и основания. Так как её апофема перпендикулярна ребру основания мы найдём площадь её боковой грани по формуле площади треугольника, поскольку боковая грань пирамиды - это равнобедренный треугольник: S=½×a×h, где в нашем случае а- это сторона боковой грани, а h -высота (апофема) которая проведена к стороне:
Sбок.гр=½×3×5=15÷2=7,5см²
Так как таких граней 6 то площадь боковой поверхности пирамиды составит: Sбок.пов=7,5×6=45см²
Теперь найдём площадь основания. Правильный шестиугольник состоит из 6-ти правильных треугольников со стороной 3см. Площадь правильного треугольника вычисляется по формуле:
S=(a²√3)/4 - где а-сторона треугольника, которая =3, подставим в эту формулу наши данные:
S∆=(3²√3)/4=9√3/4
Таких треугольков 6 поэтому площадь основания составит:
Sосн=9√3/4×6=27√3/2
Теперь сложим эти площади и получим площадь всей поверхности пирамиды:
Sпол=27√3/2+45=13,5√3+45см²
Можно так и оставить, но если нужно вычислить полностью, то: √3≈1,73, подставим это значение:
13,5×1,73+45=23,355+45=68,355см²
Площадь равнобедренной трапеции ABCD равна 48 см². Высота трапеции равна 4√3 см ,боковая сторона 5√3 см .Боковые стороны AB и CD продолжили до пересечения в точке О .Найдите площадь треугольника AOD в ( у см² ).
Объяснение:
1) Пусть МВ⊥АД, СР⊥АД. Тогда ΔАВМ=ΔДСР как прямоугольные по гипотенузе (АВ=СД) и острому углу (∠А=∠Д , как углы при основании равнобедренной трапеции)⇒ АМ=РД .
2)ΔАВМ-прямоугольный , по т. Пифагора АМ=√(25*3-16*3)=3√3 (см), значит РД=3√3 см.
3)Длина АД=АМ+МР+РД=6√3+МР . Пусть МН=у, АД=6√3+2у ⇒ВС=6√3+2у .
S(трап)=1/2*(АД+ВС)*ЕН , 48=1/2*(6√3+4у)*4√3 ,6√3+4у= ,
4у= 8√3-6√3 , у= ⇒ ВЕ=
4) АН=3√3- =3,5√3 (см).
ΔОВЕ подобен ΔОАН по двум углам: ∠О-общий,∠ВЕО=∠АНО=90°, значит , , ,
OE= см
5) Высота ОН= +4√3 = (см) , АД=6√3+√3=7√3 (см).
S(AOД)=1/2*АД*ОН , S(AOД=1/2* 7√3* = 49(см²).
Поделитесь своими знаниями, ответьте на вопрос:
Найдите площадь треугольника abc, если известно, что: a=8, c=6, ∠b=135°
Чувак... Честно я пытался, но ответ странный, я не понял зачем угол В... Короче я не уверен вообще, прости
Объяснение: