Объяснение:
у= х²-4х+3
график парабола
1) найдём координаты вершины В(х; у)
х(В) = -b/2a
x(B) = 4/2 = 2
y(B) = 4-8+3 = -1
B(2; -1) - вершина параболы
2) найдём нули функции
у = 0
х²-4х+3 = 0
Д= 16-12 = 4 = 2²
х(1) = (4-2)/2 = 1
х(2) = (4+2)/2 = 3
(1; 0) ; (3; 0) - нули функции
3) Чертим систему координат, отмечаем стрелками положительное направление: вправо и вверх;
Отмечаем начало координат - точку О (0; 0), подписываем оси : вправо - ось х , вверх - ось у
Отмечаем единичные отрезки по каждой оси в 1 клетку.
4) Отмечаем в системе координат вершину - точку (2; -1); нули функции - точки (1; 0) и (3; 0)
5) через вершину будущей параболы проводим пунктирную прямую, параллельную оси у - ось симметрии будущей параболы и вторую пунктирную прямую, параллельную оси х. В этой новой пунктирной системе координат строим параболу у=х², а именно добавляем пару точек для правильного продления вверх нашей параболы. В новой пунктирной системе координат ставим точки
х= 2 -2 3 -3
у= 4 4 9 9
Плавно соединяем все поставленные точки, подписываем график
у = х²-4х+3
Отвечаем на вопросы по графику
1)
у∈(-1; +∞) при х∈(-∞; +∞)
2)
у>0 при х∈(-∞; 1)U(3; +∞)
Подробнее - на -
Поделитесь своими знаниями, ответьте на вопрос:
С! расстояние между разными по площади параллельными сечениями сферы-p ед.изм., радиусы этих сечений-v ед.изм. и l ед.изм. определи выражение радиуса сферы. в качестве ответа присоедини файл с рисунком и выражением, содержащим данные величины.
8см
Объяснение:
1й решения.
Найдём третью сторону треугольника по теореме косинусов.
Т. косинусов: Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
a²=b²+c²−2⋅b⋅c⋅cosA
a²=8²+ 8²−2⋅8⋅8⋅cos60°
a²=64+64 - 2·8·8·¹/₂
а² = 64
а= 8
2й решения.
2 стороны равны, значит треугольник равнобедренный. Треугольник равнобедренный, значит, углы при основании равны. Углы при основании (180-60)/2 = 60°. Все углы равны, значит, треугольник равносторонний, и третья сторона равна 8 см