Проведя перпендикуляр к меньшей стороне у нас получился прямоугольный треугольник гипотенуза которого равна корень из 21 а катеты корень из 15( по условию ) и корень из 6( длина меньшей диагонали которая является катетом треугольника ) Далее: из этого треугольника находим синус меньшего угла из этого треугольника от равен корень из 6 разделить на корень из 21 далее: Площадь находим по формуле a*b* sin( угла заключённого между ними ) таким образом перемножая все величины мы находим площадь равную 15 ответ :15
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Через вершину с паралелограма adcd проведено пряму ес, що перпендикуляра площині паралелограма. відомо що кут eod=90. довести до авсd ромб
Объяснение:
1.Площадь полной поверхности призмы – сумма площади двух оснований и площади боковой поверхности.
Обозначим вершины призмы ABCDD1A1B1C1
S осн= половине произведения диагоналей.
АС=АА1:tg30°=6√3
BD=BB1:tg60°=6/√3
S ABCD=6√3•6/√3=36 см*
Площадь боковой поверхности - произведение высоты призмы на периметр основания, т.е. 6•4AB
Ромб - параллелограмм.
В параллелограмме сумма квадратов диагоналей равна сумме квадратов всех его сторон. Для ромба, стороны которого равны,
D²+d²=4AB².
(6√3)²+(6/√3)²=4AB²
AB=√(27+3))=√30
Sбок=6•4√30=24√30см²
S полн=2•36+24√30=24(3+√3)см²
3.
Если вычесть из площади полной поверхности площадь боковой поверхности, получим площадь двух оснований.
Sпол – Sбок = 2 * Sосн = 40 – 32 = 8 см2.
Тогда Sосн = 8 / 2 = 4 см2.
Так как призма правильная, то в основании призмы квадрат, тогда:
Sосн = а2, где а – сторона квадрата.
АВ2 = 4.
АВ = 2 см.
Определим площадь бокового ребра. Sребра = Sбок / 4 = 32 / 4 = 8 см2.
Sребра = АВ * АА1.
АВ *АА1 = 8.
АА1 = 8 / 2 = 4 см.
ответ: Высота призмы равна 4 см.