Если нарисовать рисунок ав - хорда, о центр круга, то получим равнобедренный треугольник аов. проведём высоту ок. кв = 16 : 2 = 8 (см) по свойству медианы в равнобедр. треугольнике. рассм. треуг. окв. по теореме пифагора. ок^2 = оb^2 - вк^2; ок^2 = 10^2 - 8^2; ок^2 = 100 - 64; ок^2 = 36; ок = 6 см;
darialyagina
06.12.2021
Расстоянием от точки до прямой называется длина кратчайшего перпендикуляра. таким образом, необходимо опустить перпендикуляр из точки с на прямую sa. для этого достроим равнобедренный треугольник sca и перпендикуляр сk, при чем k лежит на самой стороне sa, так как угол sca острый. обозначим ck за х. тогда по т. пифагора: х^2+sk^2=sc^2 x^2+ak^2=ac^2. отсюда приравняем: sc^2-sk^2=ac^2-ak^2. 4-sk^2=sqrt2(диагональ через 1 вершину в правильном шестиугольнике в sqrt2 раза больше стороны, т.е. ac=ab*sqrt2=-sk)^2. 4-sk^2=sqrt2-(4-4sk+sk^2). 4-sk^2=sqrt2-4+4sk-sk^2. 4=sqrt2-4+4sk. 4sk=8-sqrt2. sk=2-(sqrt2)/4. kc^2=sc^2-sk^2=4-(4-sqrt2+1/8)=sqrt2-1/8. kc=sqrt(sqrt2-1/8).