1. AB
2. угол B
3. Основание.
4. a, b - катеты, с - гипотенуза.
а < с, b < c
5. КМ
6. 8 см
Объяснение:
1. Найдем угол С = 180 - (58+66) = 56
угол C меньше чем углы А и B.
Так как напротив меньшего угла лежит меньшая сторона, то АB будет меньшей стороной
2. Напротив большего угла большая сторона, значит напротив большей стороны - больший угол.
АС больше чем АВ и АD, напротив АС угол В
3. Тупым углом считается угол, больше чем 90 градусов. В равнобедренном треугольнике углы при основании равны, значит, если мы возьмём за тупой угол угол при основании, то получим что в треугольнике будет два тупых угла, и их сумма будет превышать 180, что невозможно по теореме о сумме углов треугольника. Значит, тупым углом будет угол при вершине. Так как угол при вершине тупой, два оставшихся угла при основании - острые и равны. Острый угол при меньше, чем тупой при вершине, а значит сторона, лежащая напротив угла при вершине, будет являться большей. Сторона, лежащая напротив угла при вершине в равнобедренном треугольнике является основанием, значит основание будет больше, чем боковые стороны.
4. Так как напротив гипотенузы лежит прямой угол в 90°, то по теореме о сумме углов треугольника, сумма двух других углов = 90°, а значит два других угла в любом случае будут меньше чем прямой угол => угол в 90° - самый больший, а значит и гипотенуза, лежащая напротив него, будет больше катетов.
5. Так как гипотенуза всегда больше, чем катет, то КМ будет являться гипотенузой.
Проверим через теорему Пифагора
4²+3² = 5²
16 + 9 = 25
25 = 25, √25 = 5 => 5=5
6. Треугольник равнобедренный, значит у него две равные стороны и основание. Возьмём за основание 16 см, значит, боковая сторона 8 см. По свойству равнобедренного треугольника вторая боковая сторона тоже будет 8 см. Проверим по теореме о сумме сторон(сумма двух сторон не должна быть больше оставшейся стороны)
8+8=16 чм, вторая сторона тоже 16 см, значит, длина третьей стороны - 8 см
Возьмём за боковую сторону 16 см, тогда основание будет 8 см. Точно так же по свойству равнобедренного треугольника получим, что вторая боковая сторона будет 16 см. Проверим по теореме о сумме сторон:
16+16 = 32 см, 32 см > 8 см => такого треугольника не существует.
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике cde угол c равен 30 градусов, d равен 45, ce = 6 корней из 2. найдите de
1. б
2. б и в
3. б
4. а
5. в
6. в
Объяснение:
1. б) может быть верно - свойство медианы равнобедренного треугольника, проведённой к основанию, а про медианы, проведённые к боковым сторонам, ничего подобного не говорится.
2. б) все его углы равны и в) любая высота является биссектрисой и медианой. б - свойство углов равностороннего треугольника, в - про это я пишу в 4 пункте
3. б) в равнобедренном. В любом точно нет. В равностороннем таких высот несколько, а спрашивается про одну
4. а) всегда верно - так как треугольник равносторонний, то у него стороны являются и основаниями и боковыми сторонами одновременно, если выделять здесь равнобедренные треугольники, поэтому свойство медианы равнобедренного треугольника распространяется на все медианы, биссектрисы и высоты.
5. в) ответы а и б неверны. ответ а неверен, так как основание равнобедренного треугольника не всегда равно боковым сторонам. ответ б неверен, так как медианой, биссектрисой и высотой является только медиана, ПРОВЕДЁННАЯ К ОСНОВАНИЮ (опять же таки повторяю про это свойство)
6. в) в равностороннем. Рассмотрим треугольник ABC, который не является ни равносторонним, ни равнобедренным и проведём в нём высоту. Высота AH не поделила т. ABC на равные треугольники ABH и ACH. Рассмотрим другой треугольник DEF, который является равнобедренным. В нём боковые стороны DE и FE. Высота EH делит треугольник на 2 равных. Они равны по 1, 2 и 3 признакам равенства треугольников (здесь можно доказать 1 из них, без разницы), так как EH является также медианой и биссектрисой, а FE=DE. А теперь проведём высоту FG. Она не поделила треугольник DEF на равные, так как высота проведена к боковой стороне, а не к основанию. Следовательно, вариант в верный.
P.S. учите геометрию и учитесь внимательно читать какие бы то ни было геометрические свойства, признаки, определения, теоремы и т.д. и т.п. и всё получится(: