Круг вписан в ΔАВС. N, Е, F - точки соприкосновения.
Р ΔАВС = 52 см. AN: NB = 2: 3. ЕС = 6 см. Найти: АВ, ВС, АС.
По условию AN: NB = 2: 3, AN = 2х (см), NB = 3х (см).
По свойству касательных, проведенных к окружности с одной точки, имеем:
AN = AF = 2х (см), NB = BE = 3х (см), ЕС = FC = 6 см.
По аксиомой измерения отрезков имеем:
АВ = AN + NB; АВ = 2х + 3х = 5х (см).
ВС = BE + ЕС; ВС = 3х + 6 (см)
AC = AF + FC; АС = 2х + 6 (см). В = АВ + ВС + АС.
Составим i решим уравнение:
5х + 3х + 6 + 2х + 6 = 52; 10х + 12 = 52; 10х = 51 - 12; 10х = 40;
х = 40: 10; х = 4 АВ = 5 • 4 = 20 (см) ВС = 3 • 4 + 6 = 18 (см)
АС = 2 • 4 + 6 = 14 (см).
Biдповидь: 20 см, 18 см, 14 см.
В любой правильный многоугольник можно вписать единственную окружность.
Доказательство:
Надо доказать, что существует точка, равноудаленная от сторон многоугольника.
Пусть О - центр окружности, описанной около правильного многоугольника.
Тогда ОА₁ = ОА₂ = ОА₃ = ... как радиусы описанной окружности, значит треугольники ОА₁А₂, ОА₂А₃ и т.д. равны по трем сторонам (отрезки А₁А₂, А₂А₃ и т.д. равны, как стороны правильного многоугольника),
но тогда равны и высоты этих треугольников, проведенные к сторонам А₁А₂, А₂А₃ и т.д.
Значит, точка О равноудалена от сторон многоугольника, и окружность с центром в точке О и радиусом, равным ОК₁, пройдет через точки К₁, К₂, и т.д., то есть будет касаться сторон многоугольника и значит будет вписанной.
В правильном многоугольнике центры вписанной и описанной окружностей совпадают.
Докажем, что эта окружность единственная.
Предположим, что существует еще одна окружность с центром в некоторой точке О₁, вписанная в тот же правильный многоугольник.
Тогда точка О₁ равноудалена от сторон этого многоугольника, значит лежит в точке пересечения биссектрис его углов, значит совпадает с точкой О - точкой пересечения его биссектрис. Радиус этой окружности равен расстоянию от точки О до сторон, т.е. равен ОК₁, значит эти окружности совпадают.
Поделитесь своими знаниями, ответьте на вопрос:
Найти все углы параллерограмма если : 1)угол а=10°
Угол С равен 10
Угол В не известен, т.к. мало инфы
Угол Д тоже не известен т.к. мало инфы