Медианы треугольника пересекаются в одной точке, и точкой пересечения делятся в отношении 2:1, считая от вершины.
⇒ ВМ:МК=2:1.
У ΔАМК и ΔАВМ одна и та же высота АН - перпендикуляр, проведенный из вершины А к прямой ВК, содержащей стороны ВМ и МК этих треугольников.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты) ⇒
Samk/Sabm=1/2 ⇒
11/Sabm=1/2 =>
22=Sabm.
Sabk=22см²+11см²=33см²
медиана ВК делит ΔАВС на два равновеликих т.е Sabk = Skbc.
⇒
Sabc=33*2=66см²
Vkois56
13.11.2021
В 1) задаче смотри рисунок...проводим две высоты к большому основанию они отсекут два отрезка (эти отрезки маленькие называются полуразность оснований) то есть они равны каждый (49-15)/2=34/2=17 видим что в маленьких треугольниках один угол 60 градусов второй 90 значит третий=180-90-60=30 напротив этого угла как раз и лежит катет=17 значит боковая сторона (гипотенуза)=17*2=34 периметр=2*34+15+49=68+64=132
2) обозначим основания как 2х и 3х тогда (2х+3х)/2=5 5х=10 х=2 2*2=4 меньшее основание 3*2=6 большее
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
В прямоугольной трапеции ABCD боковая сторона AB перпендикулярна основанию. Найдите CD, если AB=5, BC=2, AD=14. С РИСУНКОМ!
66 см²
Объяснение:
Медианы треугольника пересекаются в одной точке, и точкой пересечения делятся в отношении 2:1, считая от вершины.
⇒ ВМ:МК=2:1.
У ΔАМК и ΔАВМ одна и та же высота АН - перпендикуляр, проведенный из вершины А к прямой ВК, содержащей стороны ВМ и МК этих треугольников.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты) ⇒
Samk/Sabm=1/2 ⇒
11/Sabm=1/2 =>
22=Sabm.
Sabk=22см²+11см²=33см²
медиана ВК делит ΔАВС на два равновеликих т.е Sabk = Skbc.
⇒
Sabc=33*2=66см²