Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.
R=4см
Sосн=16π см²
Sбок.=16π√2см²
Sпол.=16π+16π√2 см²
Объяснение:
∆SBA- равнобедренный <SBA=<SAB=45°
∆SOA- прямоугольный, равнобедренный.
<SOA=<ASO=45°.
SO=OA=R=4 см
Sосн=πR²=π*4²=16π см² площадь основания конуса.
∆SOA- прямоугольный.
SA- гипотенуза
SO и ОА - катеты.
По теореме Пифагора найдем
SA²=SO²+OA²=4²+4²=16+16=32
SA=√32=4√2 см апофема
l=SA=4√2 см
Sбок=πRl, где l- апофема.
Sбок=π*4*4√2=16π√2 см² площадь боковой поверхности конуса.
Sсеч=SO*BA/2=SO*2*OA/2=SO*OA=4*4= =16 см² площадь осевого сечения.
Sпол=Sосн+Sбок=16π+16π√2 см² площадь полной поверхности конуса.
Поделитесь своими знаниями, ответьте на вопрос:
Нужно найти величину сил.
.............................................................