Представим четырехугольную пирамиду, в основании которой - ромб со стороной а=4 см, и углом в 60°, т.к. точка М равноудалена от всех сторон ромба, то ее проекцией на плоскость ромба является центр окружности, вписанной в ромб. Радиус этой окружности посчитаем по формуле r=S/2a, где а- сторона ромба, S- площадь ромба. Она равна
Треугольник, в котором искомое расстояние (катет прямоугольного треугольника к, / c=5см, r=√3cм/, находим по теореме Пифагора
к= √(с²-r²)=√(5²-(√3)²)=√(25-3)=√22/см/
ответ √22см
laplena1982750
09.04.2023
I. Верно ли , что всякая теорема имеет обратную ? Нет ( например , теорема о сумме смежных углов не имеет обратной ) 2 , можно ли найти два смежных угла , сумма которых равна 360 " ? Нет ( по соответствующеи теореме , сумма двух любых смежных углов равна 90°) З. Существует ли треугольник , у которого два прямых угла ? Нет ( если бы у некого треугольника было бы два прямых угла , то по теореме о сумме углов треугольника на два других приходилось бы о " , что невозможно по аксиоме об измерении углов ) 4. Верно ли , что у равностороннего треугольника все стороны равны ? Да ( по определению равностороннего треугольника ) 5. Действительно ли у всякого треугольника есть три вершины ? Да ( по определению треугольника ) 6. Верно ли , что аксиомы необходимо доказывать ? Нет ( аксиома - утверждение , не требующее доказательств ) 7.Действительно ли сумма двух внутренних односторонних углов при параллельных прямых и секущей равна 1807 Да ( по свойству углов , образованных при пересечении параллельных прямых секущей ) 8. Верно ли , что перпендикулярные прямые пересекаются под прямым углом : да ( по определению перпендикулярных прямых ) . 9.Действительно ли угол , образованный касательной и радиусом , проведенным в точку касания , равен 90 " ? Да ( по определению касательной ) 10. Верно ли , что всякие смежные углы равны ? Нет ( будут равны лишь те смежные углы , каждый из которых равен 90°.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
можно хотя бы первые три задачи, и с подробным решением и объяснением, очень
Представим четырехугольную пирамиду, в основании которой - ромб со стороной а=4 см, и углом в 60°, т.к. точка М равноудалена от всех сторон ромба, то ее проекцией на плоскость ромба является центр окружности, вписанной в ромб. Радиус этой окружности посчитаем по формуле r=S/2a, где а- сторона ромба, S- площадь ромба. Она равна
S=4²*sin60°=16*√3/2=8√3, значит, радиус равен r=8√3/(2*4)=√3/см/.
Треугольник, в котором искомое расстояние (катет прямоугольного треугольника к, / c=5см, r=√3cм/, находим по теореме Пифагора
к= √(с²-r²)=√(5²-(√3)²)=√(25-3)=√22/см/
ответ √22см