Вступление:
Пусть в прямоугольной трапеции ABCD, AB и CD основания, а ∠D прямой. Тогда AD меньшая боковая сторона (как расстояние между параллельными отрезками AB и CD), то есть AD=19см. По построению DC большое основание, поэтому по условию DC=31см. Острые углы при большом основании, ∠C=45° т.к. ∠D=90°.
H∈DC, BH⊥DC ⇒ BH=AD=19см.
В прямоугольном ΔBHC:
∠C=45°, ∠H=90° ⇒ ∠B=45°⇒ HC=BH=19см.
DH=DC-HC=31-19=12см.
В четырёхугольнике ABHD:
∠D=90°, ∠H=90° и ∠A=90°, ∠B=90° т.к. AB║DH, ведь H∈DC и AB║DC.
Получается ABHD - прямоугольник, поэтому AB=HD, HD=12см ⇒ AB=12см.
AB мень. осн. т.к. CD - большее.
Меньшее основание равно 12см.
Поделитесь своими знаниями, ответьте на вопрос:
Прямая касается окружности с центром Оив точке В. Накасательной по разные стороны от точки В отложеныравные отрезки BA и BC. Докажите, что OA =ОВ.
Объяснение:
Касательная перпендикулярна к радиусу окружности, проведённому в точку касания, значит ∠ОВА=∠ОВС=90.
ΔОВА=ΔОВС по двум сторонам и углу между ними :АВ=ВС по условию, ОВ-общая, ∠ОВА=∠ОВС=90.
В равных треугольниках соответственные элементы равны: АО=СО