Найти стороны равнобедренного треугольника АВС, то есть АВ, ВС, АС — ?
Рассмотрим равнобедренный треугольник АВС. У него боковые стороны равны между собой, тогда АВ = ВС.
Пусть длина основания АС = х сантиметрам. тогда длины его боковых сторон АВ = ВС = х + 5 сантиметров. Нам известно, что периметр треугольника АВС равен 37 сантиметров. Составляем уравнение:
Для начала найдем отношение ВР/РС. Для этого: Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD. ∆АКМ ~ ∆BKD по двум углам (1). ∆АРС ~ ∆DРВ по двум углам (2). Из (1) BD/AM=4 и BD=4AM = 2AC. Из (2) BP/PC=2. ВМ - медиана и по ее свойствам Sabm=Scbm. Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc. Sakm=Sabc*1/(2*5)=(1/10)*Sabc. Треугольники ABP и APC - треугольники с общей высотой к стороне ВC. Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc. Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc. Sabk/Skpcm=(2/5)/(7/30)=12/7.
Дано:
равнобедренный треугольник АВС,
АС — основание,
АВ = АС + 5 сантиметров,
Р АВС = 37 сантиметров.
Найти стороны равнобедренного треугольника АВС, то есть АВ, ВС, АС — ?
Рассмотрим равнобедренный треугольник АВС. У него боковые стороны равны между собой, тогда АВ = ВС.
Пусть длина основания АС = х сантиметрам. тогда длины его боковых сторон АВ = ВС = х + 5 сантиметров. Нам известно, что периметр треугольника АВС равен 37 сантиметров. Составляем уравнение:
х + х + 5 + х + 5 = 37;
3 * х + 10 = 37;
3 * х = 37 - 10;
3 * х = 27;
х = 27 : 3;
х = 9 сантиметров — длина основания АС;
9 + 5 = 14 сантиметров — длины сторон АВ и ВС.
ответ: 9 сантиметров; 14 сантиметров; 14 сантиметров.