Высота этого треугольника, опущенная на гипотенузу из вершины прямого угла, равна 9:6·2= 3 см
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
Найдем эти отрезки, обозначив один из них х, другой 6-х:
9=х(6-х)
9=6х-х²
3²= x *(6-x)
х²-6х+9=0
Решив это квадратное уравнение, найдем два одинаковых корня х=3
Следовательно, отрезки, на которые высота делит гипотенузу, равны, и треугольник - равнобедренный.
Высота равна 3, половина гипотенузы=3.
Из прямоугольного треугольника с катетами 3 и 3 найдем боковую сторону ( катет исходного треугольника)
х²=3²+3²=18
х= √18=3√2
Катеты равны 3√2
Проверка:
Площадь найдем половиной произведения катетов:
S= (3√2)·(3√2):2=9·2:2=9 cм²
<BAC = 30° (150°).
Объяснение:
В прямоугольном треугольнике СЕА косинус угла А равен
CosA = AE/AC.
В прямоугольном треугольнике ADB косинус угла А равен
CosA = AD/AB.
Следовательно, АЕ/АС = AD/AB. => треугольник DAE подобен треугольнику АВС c коэффициентом подобия, равным CosA.
CosA = DE/BC = 3/2√3 = √3 /2.
ответ: угол А равен 30°. (Или 150° для тупоугольного треугольника с тупым углом А).
P.S. Насчет подобия - это теорема, которую, может быть, Вы не проходили. Она справедлива, естественно, для любых треугольников. Но для любознательных привожу все варианты.
Поделитесь своими знаниями, ответьте на вопрос:
К данному рисунку известно следующее: DB=BC; DB∥MC; Угол BCM = 158°. Найди величину угла 1. Заранее