Мне проще эту задачу было решить с тригонометрии... но, получив "красивый" ответ --- угол равен 45°, захотелось найти более простое решение (ведь не указано для какого класса решается задача и, возможно, тригонометрия автору еще не известна))) не знаю--получилось ли проще... т.к. один данный угол является половиной другого, то очень хочется связать их в один треугольник... если провести биссектрису угла в 30°, то получим равнобедренный треугольник с углами при основании по 15°, в нем хочется построить высоту... но тогда и к биссектрисе провести перпендикуляр и получим еще один равнобедренный треугольник с углом при вершине 30°))) осталось рассмотреть получившиеся треугольники... один из них (выделила желтым цветом) окажется равносторонним... другой (прямоугольный) окажется равнобедренным... (ярко желтые уголки--по 45°)
ilonchick679
19.05.2022
Я не знаю как вставить сюда рисунок, ну и ладно, тогда вникай. Походу, что эти биссектрисы пересекаются. В прямоугольнике все углы равны 90°, а противоположные стороны равны ⇒АВ=СД=6, ВС=АД=11 Биссектрисы ВХ и CY делят угол на равные углы 45° Рассмотрим ΔХАВ и ΔYCД: ∠АВХ=∠ДCY = 45° (по док. выше) АВ=АХ(Потому что ∠AXB(1)=∠DYC(2) = 45° (по св парал. прямых; ∠1 и ∠ 2-накрестлеж., потому что лежат на парал. прямых при сек. ВX), а значит, что это треугольник равнобедренный)⇒ВА=СД АХ=ДY (я здесь много что написал, но я надеюсь, что ты разбирешься и сам напишешь пограмотнее) Из этого всего мы доказали, что ΔХАВ и ΔYCД равны (по двум сторонам и углу между ними) Из этого доказательства мы выяснили, что АХ=ДY = 6 Но вся сторона АД = 11, получается, что две биссектрисы пересекаются и расстояние между XY 1 см(или в чем там измеряется)
Я здесь что-то много написал, но ты разберись и сам напиши попонятнее Но я старалась )
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Знайдіть більшу висоту трикутника сторони якогг дорівнюють 9 10 17
но, получив "красивый" ответ --- угол равен 45°,
захотелось найти более простое решение
(ведь не указано для какого класса решается задача и, возможно, тригонометрия автору еще не известна)))
не знаю--получилось ли проще...
т.к. один данный угол является половиной другого,
то очень хочется связать их в один треугольник...
если провести биссектрису угла в 30°, то
получим равнобедренный треугольник с углами при основании по 15°,
в нем хочется построить высоту...
но тогда и к биссектрисе провести перпендикуляр и получим
еще один равнобедренный треугольник с углом при вершине 30°)))
осталось рассмотреть получившиеся треугольники...
один из них (выделила желтым цветом) окажется равносторонним...
другой (прямоугольный) окажется равнобедренным...
(ярко желтые уголки--по 45°)