mospaskrasnogorbukh
?>

В треугольнике CDE внутренний < при вершине D=46°, а внутренний при вершине С=52°. Найдите внешний < при вершине Е​

Геометрия

Ответы

vshumilov

Внешний угол равен сумме двух внутренних углов треугольника не смежных с ним.

x = 46+52= 98°

brakebox
Построим прямую из угла А к углу С. т.к. угол А прямой (90), то прямая АС делит его пополам, => угол САD = 30 (это 180-(60+90)=30). АD является гипотенузой в треугольнике САD. По правилу - против угла 30 лежит катет равный половине гипотенузы. Катет СD = 7, => АD (гипотенуза) =14 см. Построим из угла ACD прямую, перпендикулярную основанию АD в точке Н и получим прямой угол. Угол С = 30. По тому же свойству о угле в 30 градусов получаем, что отрезок НD = 3,5.
BC=AD-HD=14-3,5=10,5
ответ: г) 10,5
Abcd-трапеция,abllbc,ab перпендикулярен ad, угол d=60 градусов.найдите основание вс,если cd=7 см,ас
rsd737

Из заданного соотношения длин сторон треугольника АВС имеем:

АВ = 1, АС = (3/2)АВ, ВС = (4/3)АВ.

Приводим к общему знаменателю и представляем длины сторон подобного треугольника в целом виде: А1В1 = 6, А1С1 = 9, В1С1 = 8.

Находим углы этого (они же и у заданного) треугольника по теореме косинусов :  cosα = (b²+c²−a²)/2bc.

Подставив данные длин сторон треугольника А1В1С1, находим:

cos A = 0,490741,

cos B = 0,1979167,

cos C = 0,756944.

Соответственно углы равны:

A = 1,057857 радиан или 60,61072 градусов,

B = 1,371564                         78,584842,

C = 0,712172                         40,804438.

Отсюда находим угол Q1D1B1 по сумме углов смежного треугольника:  ∠Q1D1B1 = (1/2)∠А + ∠С = 71,109798  градуса.

Теперь переходим к длинам треугольника Q1D1B1.

Длина B1D1 по свойству биссектрисы р = ((ас)/(b + c)) равна:

B1D1 = p = (8*6)/(9 + 6) = 48/15 = 16/5 = 3,2.

Отрезок С1D1 = q = 8 - 3,2 = 4,8.

Находим длину биссектрисы А1D1:

A1D1 = √(bc - pq)  = √(9*6 - 3,2*4,8) = √38,64 ≈   6,216108.

Биссектриса А1D1 делится точкой пересечения с биссектрисой В1Е1 в отношении (b + c)/a. Отсюда находим длину Q1D1.

Q1D1 = A1D1*(a/(a + b +c)) = 6,216108*(8/23) = 2,162125.

Теперь можно определить площадь подобного треугольника Q1D1B1 по двум сторонам и углу между ними.

S(Q1B1D1) = (1/2)*2,162125*3,2*sin71,109798° = 3,273079.

Находим коэффициент"к" пропорциональности треугольников QBD и  Q1B1D1:

к =√(S(QBD)/S(Q1B1D1)) = √(1/3,273079) = 0,552741.

По этому же коэффициенту находим длины сторон треугольника АВС.

Площадь АВС = 7,1875 А1В1 = В1С1 = А1С1 = Р = 12,713046

AB =3,316447

BC =4,421929

       AC =4,974670/

Площадь АВС находим по формуле Герона.

       Р = 12,713046,         р = 6,356523.

       S(АВС) = 7,1875 кв.ед.

Проверяем соотношение длин сторон:

  1 1,3333 1,5  

    1 4/3        3/2. Соответствует заданному.

ответ: площадь АВС = 7,1875 кв.ед.  


с задачей по планиметрии из вложения:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

В треугольнике CDE внутренний < при вершине D=46°, а внутренний при вершине С=52°. Найдите внешний < при вершине Е​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Pavel_Olegovna1601
Кирилл_Гульницкий
Константиновна
ЕлизаветаВладимирович
Andreevna_Grebenshchikova155
Денис_Петровна
Назаров588
tatianaesipenko
shyroshka836103
Смирнов-Оськина
sov0606332
pavelriga5
Екатерина1979
ortopediya
tsypant