В треугольнике АВС известны стороны АВ = 30 см, ВС = 18 см и АС = 24 см. Сколько общих точек имеет окружность с центром в точке В и радиусом 18 см со стороной АС?
Градусная мера дуги РК = 80 это означает, что центральный угол, опирающийся на эту дугу (это угол РОК))) равен 80 градусов, а вписанный угол, опирающийся на эту же дугу (это угол РМК))), равен 80/2 = 40 градусов... т.к. треугольник по условию равнобедренный, то угол РКМ = РМК = 40 и угол МРК = 100 градусов а про дугу МК можно порассуждать двумя вписанный угол РМК = 100, значит дуга = 100*2 = 200 градусов... или по дугам... дуги РК и РМ в сумме 80+80 = 160 градусов дуга МК --это то, что осталось от окружности, т.е. 360-160 = 200
antongenfon
29.12.2020
Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
В треугольнике АВС известны стороны АВ = 30 см, ВС = 18 см и АС = 24 см. Сколько общих точек имеет окружность с центром в точке В и радиусом 18 см со стороной АС?
это означает, что центральный угол, опирающийся на эту дугу (это угол РОК)))
равен 80 градусов,
а вписанный угол, опирающийся на эту же дугу (это угол РМК))),
равен 80/2 = 40 градусов...
т.к. треугольник по условию равнобедренный, то угол РКМ = РМК = 40
и угол МРК = 100 градусов
а про дугу МК можно порассуждать двумя
вписанный угол РМК = 100, значит дуга = 100*2 = 200 градусов...
или по дугам...
дуги РК и РМ в сумме 80+80 = 160 градусов
дуга МК --это то, что осталось от окружности, т.е. 360-160 = 200