дуга АC=37 -центральный угол АОС=37
дуга BD=23 --центральный угол АОС=37=23
тогда -центральный угол СОD=180-37-23=120
В треугольнике СОD сторона (хорда)CD
треугольник СОD -равнобедренный ОС=ОD=R=15
построим высоту к стороне CD, тогда СК=КD
высота ОК делит угол COD пополам КОD=120/2=60
рассмотрим треугольник ОКD-прямоугольный
в нем OD-гипотенуза, ОK-катет
ОК=OD*cosKOD=R*cos60=15*1/2=15/2 см
По теореме Пифагора KD^2=OD^2-OK^2=15^2-(15/2)^2=15^2(1-1/4)=15^2*3/4
тогда КD=15*√3/2
хорда CD=2KD=2*15*√3/2=15√3
ответ хорда CD=15√3
Поделитесь своими знаниями, ответьте на вопрос:
Из одной точки к плоскости проведены перпендикуляр и наклонная. Углы, образованные наклонной с ее проекцией и перпендикуляром, равны. Чему равен угол (в градусах) между наклонной и плоскостью .
Напишу для первого
За т.синусов
MN MK
=
sinK sinN
Найдем кут K
КутК=180-(КутN+КутМ)
180-(20+80)=80
sinK = 0.984
sinN = 0.984
MN = (МК x sinK):sinN
MN = (10 x 0.984):0.984 = 10
И тут я понял, что скорее всего вам нужно найти сторону MN через равнобедренность треугольника (скорее всего тему косинусов вы еще не проходили), поэтому напишу второе решение:
Докажем равнобедренность треугольника
КутК=180-(КутN+КутМ)
180-(20+80)=80
Так как углу углы при основе одинаковые, то треугольник равнобедренный и из этого выплывает что МК=MN=10