tatyanakras911248
?>

Знайдіть радіус кола, радіус якого дорівнює 8см

Геометрия

Ответы

Yurevich1243

а)

проекция Точки A на плоскость (A1B1C1)=A1, проекция точки D=D1, значит проекция отрезка AD=A1D1.

Отрезок A1D1║B1C1 из свойств правильного шестиугольника, и A1D1║AD так как плоскость (ABC)║(A1B1C1) значит AD║B1C1 Ч.Т.Д.

б)

Рассмотрим треугольник A1B1C1, опустим высоту A1H на основание B1C1, AH Также будет ⊥B1C1 по теореме о трех перпендикулярах, значит AH искомое расстояние.

AA1 будет ⊥A1H так-как он ⊥ плоскости (A1B1C1).

найдем A1H методом площадей в треугольнике A1B1C1.

$$\begin{lgathered}S=\frac{1}{2} A_1B_1*B_1C_1*sin(120)=\frac{1}{2} B_1C_1*A_1H\\a^2*sin(120)=a*A_1H\\A_1H=a*sin(180-60)=a*sin(60)=\frac{a\sqrt{3}}{2}\end{lgathered}$$

A1H также можно было найти рассмотрев треугольник A1BH, сказав что A1H=A1B1*sin(60)

теперь по теореме пифагора найдем AH:

$$AH=\sqrt{A_1H^2+AA_1^2}=\sqrt{\frac{4a^2}{4}+\frac{3a^2}{4}}=\frac{a\sqrt{7}}{2}$$

ответ: $$AH=\frac{a\sqrt{7}}{4}$$

igorshevkun

Объяснение:

Очевидно, что внутри отрезка AB такой точки существовать не может (если бы существовало, тогда сумма двух меньших отрезков должна быть больше длины исходной, что является противоречием), поэтому эта точка должна лежать где-то за пределами отрезка (по условию же сказано, что нужно найти точки на прямой, а не внутри отрезка).

Пусть l - расстояние от искомой точки X до A, тогда l + 6 - это расстояние от X до B. Тогда справедливо уравнение:

l + l + 6 = 10\\2l = 4\\l = 2

Значит, точка X должна отстоять от точки A на 2 см

Выглядит схематично это так:

                         2см                      6см

---------------|----------------|------------------------------------------|----------------->

               X                 A                                                B

Это справедливо и для случая:

                                     6см                               2см

------------------|------------------------------------------|-------------|--------->

                  A                                                B             X

Больше таких точек нет.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Знайдіть радіус кола, радіус якого дорівнює 8см
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

tershova
Batishcheva
yulialoveinthelow2010
dubaiexport
dubaiexport
marinatehnomaster21
chernovol1985255
markitandl
artashhovhan
Оксана759
манукян29
nalekseeva62
mvinogradov6
yusliva
btatarintsev