ответ: (sin^2t-1)/(cos^2t-1) + tgt•ctgt=
=(sin^2t-sin^2t-cos^2t)/(cos^2t-sin^2t-cos^2t)+1=
=(-cos^2t/-sin^2t) +1=(cos^2t/sin^2t)+1=(cos^2t+sin^2t)/sin^2t=1/sin^2t. Это первое)
2 не смогла).
cos^2t-ctg^2t)/(sin^2t-tg^2t)
cos^2t-ctg^2t=cos^2t-cos^2t/sin^2t=(cos^2t*sin^2t-cos^2t)/sin^2t=
=(-cos^2t(1-sin^2t))/sin^2t=-cos^4t/sin^2t
sin^2t-tg^2t=sin^2t-sin^2t/cos^2t=(sin^2t*cos^2t-sin^2t)/cos^2t=
=(-sin^2t(1-cos^2t))/cos^2t=-sin^4t/cos^2t
-cos^4t/sin^2t:(-sin^4t/cos^2t)=cos^6t/sin^6t=ctg^6t. Это третье).
Объяснение:
6 ед.
Объяснение:
В правильной усеченной пирамиде в основаниях лежат правильные многоугольники, стороны которых соответственно равны между собой. Боковые грани такой пирамиды - равные между собой равнобокие трапеции. Радиусы окружностей, вписанных в основания, проведенные в точки касания сторон оснований с соответственной окружностью Н и Н1, перпендикулярны к сторонам оснований по свойству радиусов, проведенных в точки касания.
Проведем перпендикуляр из точки касания Н1М верхнего основания на нижнее основание. Тогда отрезок Н1Н перпендикулярен стороне основания АВ по теореме о трех перпендикулярах, то есть является искомой высотой боковой грани.
В прямоугольном треугольнике НН1М угол ∠НН1М = 30° по сумме острых углов. Следовательно, НН1 = 2·НМ по свойству катета, лежащего против угла 30°.
НМ = ОН - О1Н1 = 8-5 = 3 ед.
Высота боковой грани НН1 = 6 ед.
Поделитесь своими знаниями, ответьте на вопрос:
Знайти довжину кола с радиусом 12 см
75.36
Объяснение:
2Пr
2•3.14•12=75.36