gdmaslo
?>

Знайдіть радіус кола описаного навколо квадрата з площею 16 см 2​

Геометрия

Ответы

Anastasiya81

ответ: два решения (одно для остроугольного треугольника, другое для тупоугольного...)

1) Р = 256 (см)

2) Р = 56V21 (см)

Объяснение: треугольник АВС, основание ВС=2а (чтобы не возиться с дробями); АВ=АС=b

P = 2a+2b = 2(a+b)

а=b*cos(B); по т.синусов: b=2R*sin(B)

S = 2a*h/2 = ah; h = b*sin(B)

S = P*r/2 = (a+b)*r

(a+b)*r = ab*sin(B)

b(1+cos(B))*r = b*b*sin(B)*cos(B)

(1+cos(B))*r = 2R*sin^2(B)*cos(B)

r/(2R) = (1-cos(B))*cos(B)

обозначим х=cos(B)

x^2 - x + (6/25) = 0

(5x)^2 - 5*(5x) + 6 = 0

по т.Виета корни (3) и (2)

5х=3 ---> х = 0.6

---> sin(B) = V(1-0.36) = 0.8 или

5х=2 ---> х = 0.4

---> sin(B) = V(1-0.16) = 0.2V21

b = 2*50*0.8 = 80 или

b = 2*50*0.2V21 = 20V21

a = 80*0.6 = 48 или

а = 20V21*0.4 = 8V21

P = 2*(80+48) = 128*2 = 256 или

Р = 2*(20+8)*V21 = 56V21

Михайлович_гергиевич315

Объяснение:

Соединим А и В, С и D. Четырехугольник ABCD - вписанный, значит <ABC+<ADC=180° и <CDM+<ADC=180°, значит <ABC=<CDM. Аналогично <BAD=<DCM.

Из тр-ка △CMD <CMD(AMB)=180-<CDM-<DCM=180-<ABC-<BAD

<ABC=1/2*(AD+CD); <BAD=1/2(BC+CD).

<AMB=180-1/2*(AD+CD)-1/2*(BC+CD)=180-1/2*(AD+CD+BC)-1/2*CD

Для дуг окружности можно записать:

AD+CD+BC=360-AB - подставим в последнее выражение:

<AMB=180-1/2*(360-АВ)-1/2*СD=180-180+1/2*АВ-1/2*СD=1/2*(AB-CD)=1/2*(ALB-CKD)


Исходя из рисунка 149 докажите что угол амв равен 1/2(дуга алб-дуга скд)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Знайдіть радіус кола описаного навколо квадрата з площею 16 см 2​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Vova220
Yelizaveta1848
Dmitriy2211104
gardenkafe
ritckshulga20112
ekvld708
milanparipovic864
АндреевичОльга641
Рожнов
Andei
troyasport
lika080489
julia3594265843
Екатерина15
Anton661