Татьяна_Вологжин
?>

Катети прямокутного трикутника дорівнюють 8см і 15см.обчисльть синус найбільшого гострого кута трикутника

Геометрия

Ответы

Logukate

1. Общая формула для выражения радиуса описанной окружности R через сторону правильного n-угольника a:

R=\frac{a}{2\sin{\frac{180}{n}}}

Тогда для квадрата:

R=\frac{a_4}{2\sin{45}}

а для правильного пятиугольника:

R=\frac{a_5}{2\sin{36}}

Т.к. радиус окружности не изменяется, то можем записать:

\frac{a_5}{2\sin{36}}=\frac{a_4}{2\sin{45}}\longrightarrow\\a_5=\frac{a_4*\sin{36}}{\sin{45}}=\frac{48*\sin{36}}{\sin{45}}\approx 39,9

ответ: сторона правильного пятиугольника, вписанного в ту же окружность примерно 39,9 см

2. Площадь кольца ограниченного двумя концентрическими окружностями равна разности площадей большей и меньшей окружности.

Если обозначить радиус большей окружности через R, а меньшей окружности через r, то площадь кольца равна:

S=\pi*R^2-\pi*r^2=\pi*(R^2-r^2)=\pi*(7^2-3^2)=40\pi

ответ: площадь кольца, ограниченного двумя окружностями равна 40π см²

3. Площадь фигуры, ограниченной дугой окружности и стягивающей её хордой равна разности площадей сектора OAB и треугольника OAB.

ΔOAB равнобедренный с углом при вершине 60°, следовательно углы при основании равны (180° - 60°) / 2 = 60°. Т.е. ΔOAB - равносторонний и радиус окружности R = OA = AB = 4 м.

Площадь равностороннего треугольника выражается через его сторону по формуле:

S_1=\frac{a^2\sqrt{3}}{4}

Площадь сектора круга через угол α стягивающей его дуги и радиус окружности R найдем по формуле:

S_2=\frac{\pi*R^2*\alpha}{360}

Площадь заданной фигуры равна:

S=S_2-S_1=\frac{\pi*R^2*\alpha}{360}-\frac{a^2\sqrt{3}}{4}=\frac{\pi*4^2*60}{360}-\frac{4^2\sqrt{3}}{4}=\frac{\pi*8}{3}-4\sqrt{3}\approx 1,45

ответ: Площадь фигуры, ограниченной дугой окружности и стягивающей её хордой примерно 1,45 м²


1.периметр квадрата, вписанного в окружность, равен 48см. найдите сторону правильного пятиугольника,
1.периметр квадрата, вписанного в окружность, равен 48см. найдите сторону правильного пятиугольника,
mac4roc3781
Рис. прилагается
(ABCD) | | OO₁ ; ∠AOB =120° ; OO₁ =10 см ; OH ⊥AB ; OH =2 см .
-------
S_(ABCD) -?

ABCD - прямоугольник 
S_(ABCD)  =AB*AD = AB* OO₁=10AB . Определим  хорду AB .
∆OAB  равнобедренный (OA = OB  =r) ,   высота OH одновременно и медиана  AH =BH =AB /2  и  биссектриса * * * ∠AOH =(1/2)∠AOB =60°.* * *
∠ BAO=  ∠ABO = (180° - ∠AOB ) /2 =90°- (1/2)∠AOB =90° -60° = 30° . 
OH =OA/2 (катет против угла 30°) ⇒ OA =2*OH =2*2 см  = 4 см   и   
AB = 2* AH = 2* √ (OA² -OH²) =2√ (4² -2²) =4√3 (см) .
* * *  можно было  сразу  AB  =2* AH = 2*OH*tq60°  * * *
S_(ABCD)  =10*4√3  = 40√3  (см ²) .

ответ :  40√3 см ² .

Вцилиндре проведена параллельно оси плоскость, которая отсекает от окружности основания хорду, котор

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Катети прямокутного трикутника дорівнюють 8см і 15см.обчисльть синус найбільшого гострого кута трикутника
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Probitbiz6
avanesss
vardartem876
lebedevevgen
ak74-81
dbakun
Владислав-Александр32
koxhulya61
Mikhailovna1444
sadkofamily61
sharaeva-is
usmanovayanq2626
vet30
kreon1
sidorov9