Сначала - вс задачка. Есть равнобедренный треугольник, заданы высота h и основание a, надо найти радиус описанной окружности.
Самый простой (с точки зрения работы мозга, а не с точки зрения тупого применения формул рассматривать высоту треугольника, как высоту кругового сегмента, отсекаемого хордой длины а. Расстояние до хорды тогда R - h, и мы имеем соотношение (R - h)^2 + (a/2)^2 = R^2; откуда R = (h^2 + (a/2)^2)/(2*h);
При а = h; R = h*(1/2 + 1/8) = 5*h/8; (полезно запомнить); при h = 8; R = 5.
Теперь - собственно решение задачи.
Поскольку А равноудалена от вершин треугольника, её проекция на основание - это центр описанной окружности, а проекция наклонной из точки А равна R = 5;
Поэтому расстояние от А до вершины (любой) равно корень(5^2 + 12^2) = 13;
Поделитесь своими знаниями, ответьте на вопрос:
Задано круг с диаметром AB, где A(-3;4) , B (2;1 Постройте окружность, симметричное заданном относительно оси ординат.
50, а проекция наклонной равна 6 см. Чему равна длина перпендикуляра, проведённого из этой же точки к плоскости?
4) Если прямая перпендикулярна двум радиусам круга, как она расположена по отношению к самому кругу?
5) Сколько можно провести прямых перпендикулярных данной прямой через данную точку, если а) эта точка лежит на прямой; б) эта точка не лежит на прямой?
6) Как между собой располагаются две прямые перпендикулярные одной и той же плоскости?
7) Могут ли перпендикуляр и наклонная, проведённые из одной и той же точки, иметь равные длины?