Объяснение:
1) угол АОВ центральный и равен величине дуги, на которую опирается, то есть равен величине дуги АВ,
ответ: дуга АВ(х)= 72°
2) угол х вписаный, и опирается на дугу МК, и равен половине величины этой дуги. Вся окружность 360°.
Две дуги знаем, найдем дугу МК
МК=360°-112°-46°=202°, значит угол х=202°/2=101°
ответ угол х=101°
3) получается, что ∆АОВ равносторонний, и значит все стороны равны, х=ОА=8
ответ: х=8
4) угол АВС вписаный опирается на дугу АС, и равен половине этой дуги, значит дуга АС=2*27°=54, угол АОС центральный, опирается на дугу АС и равен величине этой дуги, угол АОС=54°
ответ: угол х=54°
5) угол АОС центральный, опирается на дугу АС и равен величине этой дуги, значит дуга АС, которая меньшая равна 130°, вся окружность 360°, значит большая дуга АС=360°-130°=230°. Угол х вписаный, опирается на большую дугу АС и равен половине величины этой дуги, значит угол х=230°/2=115°
ответ: угол х=115°
Поделитесь своими знаниями, ответьте на вопрос:
Ребро правильного тетраэдра равно 6 мм. Вычисли площадь полной поверхности
1. АА₁ - биссектриса,
ВВ₁ - медиана,
СС₁ - высота.
2. АВ = СВ,
∠АВЕ = ∠СВЕ,
ВЕ - общая сторона.
ΔАВЕ = ΔСВЕ по 1 признаку (по двум сторонам и углу между ними).
3. ∠ВАС = 180° - ∠1 по свойству смежных углов.
∠ВАС = 180° - 110° = 70°.
В равнобедренном треугольнике углы при основании равны, значит
∠ВСА = ВАС = 70°
∠BDC = 90°, так как в равнобедренном треугольнике медиана, проведенная к основанию, является высотой.
4. ОМ = ОК по условию,
∠DMO = ∠BKO по условию,
∠DOM = ∠BOK как вертикальные, значит
ΔDMO = ΔBKO по стороне и двум прилежащим к ней углам.
В равных треугольниках напротив равных сторон лежат равные углы, значит ∠MDO = ∠KBO, а так же OD = OB.
Треугольник DOB равнобедренный, значит углы при основании равны:
∠ODB = ∠OBD.
∠MDB = ∠MDO + ∠ODB
∠KBD = ∠KBO + ∠OBD, а так как ∠MDO = ∠KBO и ∠ODB = ∠OBD, то
∠MDB = ∠KBD, т.е. ∠D = ∠B