ABCDS - правильная пирамида.
Значит АВСD - квадрат. <SAO=60° (дано), <ASO=30°, так как треугольник АSO - прямоугольный (SO- высота пирамиды).
АО=12:2=6 см (как катет, лежащий против угла 30°).
Треугольник АОD - прямоугольный (АС и ВD - диагонали квадрата и AO=OD, а <AOD=90°).
Тогда АD=√(2*AO²)=АО√2 или AD=6√2. АН=3√2 см.
Апофема (высота грани) SH=√(AS²-AH²)=√(144-18)=3√14 см.
Площадь основания равна AD²=72 см².
Площадь грани равна (1/2)*SH*AD или
Sг=(1/2)*3√14*6√2 или 18√7.
Sполн=So+4*Sг=72+72√7=72(1+√7) см².
ответ: S=72(1+√7) см².
Поделитесь своими знаниями, ответьте на вопрос:
Умоляю Нужно составить 3 задачи на построение !
ответ:4√2 см.
Требуется найти расстояние от вершины А до плоскости, следовательно, основание ВС лежит в проведенной плоскости, с которой плоскость треугольника ВАС образует двугранный угол с ребром ВС. Сделаем и рассмотрим рисунок.
Расстояние от точки до плоскости равно длине опущенного на нее из точки перпендикуляра ⇒ АН - искомое расстояние.
Проведём НМ⊥ВС. По т. о 3-х перпендикулярах наклонная АМ⊥ВС. Отрезки АМ и МН образуют угол 45°. АМ⊥ВС ⇒ АМ является высотой и медианой равнобедренного ∆ ВАС. ∆ ВАМ - египетский, т.к. ВМ:АМ:АВ=3:4:5, ⇒ АМ=8 см ( можно проверить по т.Пифагора). Тогда АН=АМ•sin45°=8•√2/2=4√2 см