Рассмотрим треугольники ACF и BCF. 1) AC=BC (по условию (как боковые стороны равнобедренного треугольника)) 2) ∠ACF=∠BCF (так как CF — биссектриса по условию). 3) сторона CF — общая. Значит, ∆ ACF=∆ BCF (по двум сторонам и углу между ними). Из равенства треугольников следует равенство соответствующих сторон и углов. Таким образом, AF=BF, следовательно, CF — медиана. ∠AFC=∠BFC. А так как эти углы — смежные, значит, они прямые: ∠AFC=∠BFC=90º. Значит, CF — высота. Что и требовалось доказать.
emaykova785
16.04.2023
1. Обозначим градусную меру yгла А параллелограмма ABCD через х.
2. Определим градусную меру угла B параллелограмма ABCD:
(х + 20˚).
3. Используя свойство углов параллелограмма, составим и решим уравнение:
(х + 20˚) + х = 180˚;
х + 20˚ + х = 180˚;
2х + 20˚ = 180˚;
2х = 180˚ - 20˚;
2х = 160˚;
х = 160˚ : 2;
х = 80˚.
4. Градусная мера угла A параллелограмма ABCD равна х = 80˚.
5. Какая градусная мера угла B параллелограмма ABCD?
∆ ABC,
AC=BC,
CF — биссектриса.
Доказать: CF — медиана и высота.
Доказательство:
Рассмотрим треугольники ACF и BCF.
1) AC=BC (по условию (как боковые стороны равнобедренного треугольника))
2) ∠ACF=∠BCF (так как CF — биссектриса по условию).
3) сторона CF — общая.
Значит, ∆ ACF=∆ BCF (по двум сторонам и углу между ними).
Из равенства треугольников следует равенство соответствующих сторон и углов.
Таким образом, AF=BF, следовательно, CF — медиана.
∠AFC=∠BFC. А так как эти углы — смежные, значит, они прямые: ∠AFC=∠BFC=90º.
Значит, CF — высота.
Что и требовалось доказать.