(Рисунок во вложении)
ВА = СД ( стороны квадрата), АМ = СК ( по условию), значит ВМ=КД = 4 -1 = 3 см
Если ВМ = КД и ВМ || КД ( ВА || СД ( стороны квадрата), то МВКД – параллелограмм (если в четырёхугольнике две стороны равны и параллельны, то этот четырёхугольник – параллелограмм)
Треугольник МДА – прямоугольный ( угол А = 90 град.)
Найдем МД по теореме Пифагора:
МД^2 = MA^2+ AD^2
MD^2 = 9+ 16 = 25
MD = 5
Прведем прямую через пункт К поралллельно АД, обозначим ее КО
КО= AD= 4 см ( АВСД – квадрат)
Периметр МВКД = (5+1)*2 = 12 см
Площадь МВКД = КО* МВ = 4*1 = 4 см^2 (КО будет высота параллелограмма МВКД рвоведенная к продосжению стороны ВМ из вершины К )
ответ:Периметр МВКД = 12 см
Площадь МВКД = 4 см^2
Поделитесь своими знаниями, ответьте на вопрос:
Паралельне перенесення задається формулами х′= х - 4; у′= у + 2. В які точки при паралельному перенесенні перейдуть точки (-2; -1) і (2;1)
Сделаем рисунок.
Рассмотрим ∆ А1ОВ1.
Так как АВ и А1В1 расположены в параллельных плоскостях и лежат в плоскости ∆ А1ОВ1, АВ║А1В1.
⇒ соответственные углы этих треугольников образованные пересечением параллельных прямых и секущей равны, и
∆ АОВ~∆ A1OB1
На том же основании ВС║В1С1 и АС║А1С1⇒ ∆ АВС и ∆ А1В1С1 подобны.
Из подобия следует:
А1О:АО=14:10=k
k=1,4⇒
А1В1=2•1,4=2,8 см
B1C1=3•1,4=4,2 см
A1C1=4•1,4=5,6 см
Периметр ∆ А1В1С1=2,8+4,2+5,6=12,6 см