В Δ CDE известно, что CD = 3√2 cм, DE = 4 см, S = 6 см². Найти угол D, сторону CE i радиус окружности, описанной около треугольника.
Объяснение:
1) S( треуг.) = 1/2*а*в*sin α,
6 = 1/2*4*3√2*sin α ,
sin α= 12/ (12√2)=√2/2 ⇒ α= 45°.
2) По т. косинусов "Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними" :
СЕ²=CD²+DE²-2*CD*DE*cos(∠D),
CE²=(3√2)²+4²-2*(3√2)*4*cos45°,
CE²=18+16-2*12√2 *(√2/2) ,
CE²=34-24 , CE=√10 cм.
3)По т. синусов СЕ/sin(∠D)=2R ⇒R=√10/(2*(√2/2)) ,R=3 см
Поделитесь своими знаниями, ответьте на вопрос:
4.9. Как расположены две окружности (О.; г) и о (о.г), у которых: 1) r = 6 см, r, = 15 см, 0.0 = 21 см; 2) r = 12r, = 14 см, 0.0 = 8 см; 3) r = 6 см, r, - 5 см, 0.0 = 18 см?
11 градусов
Объяснение:
начертим прямоугольный треугольник АВС так, что бы справа у него был прямой угол.
проведём из прямого угла сначала медиану, а потом биссектрису другим цветом(что б не запутаться.)
Обазначим медиану СD, а биссектрису СX
Слева будет острый угол, равный 34.
тогда по свойству прям. угол. треуг. медиана, проведённая из вершины прямого угла равна половине гипотенузы.
Отмечаем это на черчеже.
Видим, что у нас образовался р/б треугольгик АСD.
У него есть острый угол равный 34- по мусловию.
Тогда по св0ву р/б треуг. углы при основании равны.
тогда угол DCA равен 34.
Но мы знаем, что биссектриса делит прямой угол пополам.
Тогда угол ВСА : 2 равно 45 равно углы DCX и XCA.
Теперь мы вычитаем из угла XCA угол DCA равно 45-34=11 градусов
Равно угол XCD